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ABSTRACT 9 

10 
A changing climate is anticipated to alter hydroclimatological and hydroecological 11 
processes across the UK and around the world. This paper builds on a series of reports 12 
commissioned in 2012 (WCCRC 2012) that interpreted and synthesised the relevant, 13 
peer-reviewed scientific literature on climate change impacts on the water 14 
environment in the UK. It aims to provide reliable, clear information about the 15 
potential impacts of climate change on hydrology and the water environment in the 16 
UK so that this is not a barrier to climate change adaptation. We review new evidence 17 
(since 2012) for historical and potential future changes in precipitation and 18 
evapotranspiration, followed by river flows and groundwater levels, then river and 19 
groundwater temperature and quality and finally in aquatic ecosystems. Some new 20 
evidence exists for change in most components reviewed and is typically in support of 21 
spatial and temporal changes reported in WCCRC 2012. However, it remains the case 22 
that more research has been conducted on rainfall and river flows than 23 
evapotranspiration, groundwater levels, river and groundwater temperature, water 24 
quality and freshwater ecosystems. Consequently, there remains a clear disparity of 25 
robust evidence for historical and potential future change between the ‘top’ and 26 
‘bottom’ of the hydroclimatological-hydroecological process chain. As was the case 27 
in WCCRC 2012, this is a significant barrier to informed climate change adaptation in 28 
these components of the water environment.  29 
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1. INTRODUCTION 34 
 35 
The availability of reliable, clear information about the potential impacts of climate 36 
change on hydrology and the water environment remains a barrier to climate change 37 
adaptation in the United Kingdom, and worldwide (Watts et al., 2015a). To address 38 
this stumbling block, a series of reports were commissioned in 2012 (WCCRC 2012 39 
herein) that interpreted and synthesised the relevant, peer-reviewed scientific 40 
literature on climate change impacts on the water environment in the UK. This paper 41 
aims to update the findings of those reports by reviewing the relevant literature 42 
published since 2012. Specific objectives are as follows: (1) to synthesise the 43 
evidence of historical changes to UK hydrology and the water environment (section 44 
2), (2) to summarise projected changes for the 21

st
 century (section 3), and (3) to 45 

identify the outstanding research needs to improve understanding of the water-46 
related impacts of climate change (section 4).  47 
 48 
As for WCCRC 2012, we review the evidence for changes along the 49 
hydroclimatological process chain and into the hydroecological process chain. 50 
Specifically, we review new evidence for historical and potential future changes in 51 
precipitation and evapotranspiration, followed by river flows and groundwater levels, 52 
then river and groundwater temperature and quality. Finally, we review new evidence 53 
for change in aquatic ecosystems. The paper is focused primarily on observed and 54 
projected change in components of the water environment that are modified by 55 
anthropogenic climate change. There are multiple, often interlinked, confounding 56 
factors that may have influenced any detected changes; therefore, unless all other 57 
possible causes can be excluded then changes are not, and indeed should not be, 58 
attributed to human modified climate change. 59 
 60 
 61 
2. HISTORICAL CHANGES 62 
 63 
In this section, scientific evidence of historical changes to the UK water cycle 64 
published since 2012 is reviewed.  65 
 66 

2.1 Precipitation and evapotranspiration 67 
 68 
WCCRC 2012 reported small, but significant, increases in winter rainfall intensity 69 
and duration and increased intensity of long-duration summer rainfall; however, there 70 
was no evidence to suggest that these trends were driven by anthropogenic climate 71 
change (Watts et al., 2015b). Since 2012, studies have focussed on specific regions 72 
(e.g. Afzal et al., 2015; Kosanic et al., 2014), used new datasets (Kosanic et al., 2014; 73 
Simpson and Jones, 2014) and/or methods (e.g. Jones et al., 2014; Prosdocimi et al., 74 
2014) to analyse historical change at annual and seasonal timescales.  75 
 76 
At the annual timescale, significant positive trends have been detected in rainfall 77 
totals within Scotland (Afzal et al., 2015, period 1961-2000) and also in the 78 
magnitude of extreme rainfall events (i.e. maxima) in the north, especially Scotland, 79 
(e.g. Prosdocimi et al., 2014, period 1961-2010; Jones et al., 2014, period 1961-2010) 80 
and west (Jones et al., 2014) of the UK. Significant decreases are observed in the 81 
magnitude (Jones et al., 2014) and intensity (Kosanic et al., 2014, period 1975-2010) 82 
of extreme precipitation events in southern regions. However, no significant positive 83 



or negative trend is observed in annual extreme events across the majority of the UK 84 
(Prosdocimi et al., 2014).  85 
 86 
Seasonally, average rainfall and rainfall intensity have increased significantly in 87 
winter months (December, January and February) throughout the UK, with the 88 
greatest changes observed in Scotland (Simpson and Jones, 2014, period 1932-2010; 89 
Wilby and Quinn, 2013, period 1871-2011). Winter rainfall maxima have increased in 90 
the north of England and Scotland, and summer maxima have decreased in the south 91 
of England (Prosdocimi et al., 2014). Afzal et al. (2014), Kosanic et al. (2014) and 92 
Simpson and Jones (2014) propose that the trends they detected may be linked to 93 
natural periodicities associated with the North Atlantic Oscillation (NAO). The NAO 94 
may have been enhanced by a changed climate (Simpson and Jones, 2014); however, 95 
this hypothesis has not been tested systematically. There remains insufficient 96 
evidence to propose a link between anthropogenic climate change and these reported 97 
changes in precipitation. This is unsurprising, since it has been suggested that a link 98 
may not become evident until the 2050s (Fowler and Wilby, 2010). 99 
 100 
WCCRC 2012 reported only one study (for a single site) of historical changes in 101 
evapotranspiration (evaporation to the atmosphere from soil and water surfaces, and 102 
vegetation; Kay et al., 2013) in the UK, which demonstrated an increase in potential 103 
evaporation (PE, the amount of moisture lost to atmosphere if there are no limits on 104 
water-supply; Federer et al., 1996) and a decrease in actual evaporation (AE, loss of 105 
moisture limited by soil wetness; Kay et al., 2013). In 2012 there was no evidence to 106 
suggest a link between anthropogenic climate change and changes in 107 
evapotranspiration. There remains no published study with national coverage of 108 
historical changes (Kay et al., 2013). However, Clark (2013) reports on changes in 109 
AE and PE at a site in the upper Brue catchment, Somerset. No consistent trend was 110 
observed in PE over the period 1986-2010; PE increased by ~50 mm between 1986 111 
and 1996 but declined thereafter, by ~30 mm. AE decreased by ~15% between 1996 112 
and 2008, which is consistent with observations made using the global FLUXNET 113 
dataset (see Jung et al., 2010). Consequently the decrease in AE may be 114 
representative of a wider area (Clark, 2013), although this hypothesis was not tested. 115 
Changes in AE and PE were significantly correlated with air temperature and 116 
precipitation respectively, but not linked to anthropogenic climate change. 117 
 118 

2.2 River flows and groundwater levels 119 
 120 
The 2012 report card synthesised numerous spatially and temporally extensive studies 121 
of large-scale changes in river flow throughout the UK. There have been no further 122 
studies of change in annual, seasonal or monthly average river flow regimes or low 123 
flows/ droughts. However, further studies have used new statistical methods (e.g. 124 
Prosdocimi et al., 2014) or used long-term qualitative datasets (e.g. Stevens et al., 125 
2014) to provide further evidence of change and/or variability in high river flows and 126 
floods. Prosdocimi et al. (2014) agree broadly with evidence first presented by 127 
Hannaford and Marsh (2008) of increased annual maxima in northern England, 128 
northern Scotland, and south Wales, and increased winter maxima in northwest 129 
England. As of 2012, studies had not observed a clear pattern of change in summer 130 
flows; however, Prosdocimi et al. (2014) observed downward trends in south and 131 
southeast England and upward trends in Northern Ireland, north and west Great 132 
Britain. There remains (after Watts et al., 2015b) little compelling evidence for any 133 



long-term increase in flood frequency. Muchan et al. (2015) suggest that flood 134 
magnitude (defined as the water year [October-September] maximum flow) decreased 135 
in the River Thames between the 1880s and 2014. Stevens et al. (2014) observed an 136 
increase in reported flood events during the late 20

th
 and 21

st
 century and significant 137 

inter-decadal variation in ‘flood-rich’ and ‘flood -poor’ periods (such periods were 138 
also observed by Wilby and Quinn, 2013). However, no long-term trend was evident 139 
once the datasets were normalised by population size and number of dwellings (to 140 
account for bias in a dataset that relied on public reports of flooding) (Stevens et al., 141 
2014). 142 
 143 
No studies existed in 2012 of historical changes in groundwater level within the UK, 144 
and consequently no links with anthropogenic climate change could be made. Since 145 
WCCRC 2012, groundwater level data from seven boreholes located on the Chalk 146 
aquifer were analysed by Jackson et al. (2015). Each record was > 40 years long and 147 
part of the UK’s long-term observation borehole network. Groundwater levels 148 
declined significantly at four sites, including at two sites with the longest records. 149 
Climate change was postulated as a driver for the observed declines, but could not be 150 
attributed definitively to an anthropogenically modified climate (Jackson et al., 2015). 151 
Indeed, Lavers et al. (2015) demonstrate that groundwater levels are linked strongly 152 
to meteorological variability (i.e. sequences of atmospheric patterns, water vapour 153 
transport and, in turn, precipitation). Furthermore, Jackson et al. (2015) state that the 154 
groundwater systems they studied could have been influenced by changes in 155 
abstraction and/ or resource management practices. 156 
 157 
To summarise, there remains little evidence of change in groundwater levels and low 158 
flows across the UK. However, studies published since 2012 broadly corroborate 159 
evidence of change presented in WCCRC 2012 (i.e. high flows have increased, 160 
particularly in the north and west but there is no evidence of change in flood 161 
frequency). Furthermore, previously undetected changes in summer maxima 162 
demonstrate increases in Northern Ireland, the north and west of the UK but decreases 163 
in south and south east England. However, none of the observed changes have been 164 
attributed to anthropogenic climate change. 165 
 166 

2.3 River and groundwater temperature, quality and freshwater ecosystems 167 
 168 
There remains (after Watts et al., 2015b) scarce information on historical changes in 169 
groundwater temperature in the UK and no investigation of links to anthropogenic 170 
climate change; no new studies have been published since 2012. Studies of historical 171 
changes in river water temperature are also scarce but generally report increases 172 
(Watts et al., 2015b; Hannah and Garner, 2015). Orr et al. (2015) applied 173 
sophisticated trend detection methods to a subset (2,773 sites) of the dataset used by 174 
des Clers et al. (2008; as described in WCCRC 2012) to identify temperature 175 
increases at 86% of locations, and a mean annual increase in water temperature of 176 
0.03 °C year

-1 
(also the rate reported by des Clers et al., 2008) for the period 1990-177 

2006. This change is similar to increases in air temperature over the same period (as 178 
reported by Jenkins et al., 2008) and was inferred to be driven (in the absence of other 179 
systematic influences) by anthropogenic climate change. Garner et al. (2014) analysed 180 
the same dataset but observed no trend in the frequency of occurrence of shape 181 
(timing of features) or magnitude (size) of annual river temperature regime classes for 182 
the period 1989-2006. 183 



 184 
WCCRC 2012 suggested that changes in river water quality have occurred and were 185 
driven predominantly by changes in land-use (e.g. Battarbee et al., 2014; Malcolm et 186 
al., 2014; Montieth et al., 2014), land-management (e.g. Battarbee et al., 2014) and 187 
pollution (e.g. Howden et al., 2010; Curtis et al., 2014; Watts et al., 2015b). However, 188 
there remains no evidence to suggest a link between anthropogenic climate change 189 
and historical changes in river water quality (after Watts et al., 2015b). There remain 190 
(after Watts et al., 2015b) no studies that link historical change in groundwater quality 191 
to anthropogenic climate change. Studies published since 2012 have considered 192 
industrial (e.g. Rivett et al., 2012) and agricultural sources of pollution (Zhang et al., 193 
2013), but not anthropogenic climate change.  194 
 195 
WCCRC 2012 reported that freshwater ecosystems should be considered to be among 196 
the most sensitive to anthropogenic climate change (after Durance and Ormerod, 197 
2007, 2009) because they are influenced by many interacting factors (i.e. discharge, 198 
light, water temperature, nutrient availability, habitat connectivity, species 199 
interactions and management practices; Laize et al., 2014). However, due to a lack of 200 
long-term, systematic records there were only a few geographically isolated studies 201 
that supported this statement (i.e. Clews et al., 2007; Durance and Ormerod, 2007, 202 
2010). Since 2012, Vaughan and Ormerod (2014) used data collected in 21 sampling 203 
years (1991-2011) from > 2300 rivers across England and Wales to detect evidence of 204 
climate-induced changes in spatial distribution of freshwater invertebrate taxa, but 205 
identified no clear evidence of a climate change influence. Instead, the only 206 
observation consistent with climate warming (i.e. a northward expansion of the range 207 
of many taxa) was accounted for by water quality improvements in northern England. 208 
However, taxa were extremely sensitive to shorter-term (< 2 years) inter-annual 209 
variation in temperature and discharge. Therefore, some of the long-term changes 210 
observed may have been driven by a changing climate, but these were not as 211 
influential as changes in the magnitude and geographical extent of water quality 212 
improvements (Vaughan and Ormerod, 2014). There remains little historical evidence 213 
to suggest that freshwater ecosystems have responded to anthropogenic climate 214 
change. An environment of improved water quality should allow ecological responses 215 
to climate-induced drivers (such as discharge and temperature) to be more easily 216 
identified (Durance and Ormerod, 2009) as long as long-term, systematic data 217 
collection continues. 218 
 219 

2.4 Summary of historical changes and links to anthropogenic climate change 220 
 221 
Changes have been detected in most parts of the UK water environment during the 222 
last century; however, groundwater quality is a notable exception. As was the case in 223 
2012, there has been no robust, formal attribution of observed changes in any 224 
component of the UK water environment to anthropogenic climate change. 225 
Nonetheless, there is further systematic, spatially and temporally comprehensive 226 
evidence for change, especially in precipitation and river flows.  Less evidence is 227 
available for evapotranspiration, groundwater levels, river and groundwater quality 228 
(including water temperature) and freshwater ecosystems.  229 
 230 
Confidence assessments for the level of agreement for evidence of historical changes 231 
and the robustness of that evidence for each reviewed component of the UK water 232 
environment are provided in Table 1.  233 



 234 
3. POTENTIAL FUTURE CHANGES 235 

 236 
This section considers the impact of projected climate changes on the UK freshwater 237 
environment over the 21

st
 century. Most of the studies presented used a simulation 238 

model-based framework to make projections. The dynamics of future climate must be 239 
projected before these data can be used to project future hydrological characteristics. 240 
Within this framework, general circulation models (GCMs, often using an ensemble 241 
approach to represent climate model uncertainty) are used to simulate global climate 242 
processes and account for anthropogenically driven increases in greenhouse gas 243 
concentrations (see Prudhomme et al., 2003). Then, because GCMs model climate at 244 
coarse resolution (50- 100 km; Maraun et al. 2010), outputs are sometimes 245 
downscaled to smaller spatial domains (12-50 km; Maraun et al. 2010) using regional 246 
climate models (RCM) or statistical methods (see Wilby et al., 1998; Prudhomme et 247 
al., 2003; Wood et al., 2004). In turn, these climate data are used to drive (sometimes 248 
multiple, to account for uncertainties in hydrological and associated model structure) 249 
process-based models of projected changes in the water environment. 250 
 251 

3.1 Rainfall and evapotranspiration 252 
 253 
WCCRC 2012 reported on projected changes to annual and seasonal precipitation 254 
across the UK. Projections of extreme precipitation during spring, summer and 255 
autumn were reported too, but at this time climate models were deemed unreliable at 256 
representing heavy and short-duration events (Fowler et al., 2007) that occur often in 257 
the UK during summer months (Garner et al., in press). Recently, the first long-term 258 
(20-years) simulations were performed with a ‘convection-permitting’ model (as used 259 
for short-range weather forecasting) that operates on a very fine resolution grid (1.5 260 
km), which permits more realistic representation of convection over the UK and thus 261 
hourly rainfall characteristics, including extremes (Kendon et al., 2012; Kendon et al., 262 
2014). When driven by a single climate model and run for the southern UK, the 263 
convective-permitting model indicated that the intensity of short-duration rainfall 264 
would increase by around 10% across a range of return periods during summer 265 
months (June, July and August), but that dry spells would become longer (Chan et al., 266 
2014; Kendon et al., 2014). Winter precipitation (December, January and February) 267 
was also projected to intensify by ≥ 40% across a range of return periods. Although 268 
the convective-permitting model incorporates improved process representation, it is 269 
computationally very expensive to run (Kendon et al., 2014). Consequently, model 270 
results to date are based on one climate model (i.e. Met Office Unified Model) and 271 
one emissions scenario (i.e. Intergovernmental Panel on Climate Change RCP 272 
[representative concentration pathway] 8.5, highest greenhouse emissions of all 273 
scenarios; Riahi et al., 2010) and so uncertainty arising from model structure and 274 
emissions scenario has not been assessed (Kendon et al., 2014). 275 
 276 
Projections of potential evapotranspiration (PE) are highly dependent on the method 277 
of calculation used (Prudhomme and Williamson, 2013), as demonstrated by 278 
Sheffield et al. (2012) and Dai et al. (2013). Furthermore, they are confounded further 279 
by poor understanding of possible changes in plant transpiration and growth (Kay et 280 
al., 2013a; Van den Hoof et al., 2013). Most projections indicate annual PE increases, 281 
but some project decreases for some months (Kay et al., 2013a; Prudhomme and 282 
Williamson, 2013). Prudhomme and Williamson (2013) projected percentage changes 283 



in PE using 12 equations of varying complexity driven by the Hadley Centre’s 284 
HadRM3-Q0 model outputs representative of 1961-1990 (with MORECS PET used 285 
as reference PE) and 2041-2070. In broad agreement with the studies reported in 286 
WCCRC 2012, Prudhomme and Williamson (2013) project predominantly increased 287 
PE across the UK. The largest increases in PE were anticipated in northwestern Great 288 
Britain in January, while the smallest were anticipated in the same region in July and 289 
October. Exact magnitudes were largely dependent on the method of calculation: 290 
Turc, Jensen-Haise and calibrated Blaney-Criddle methods systematically projected 291 
the largest increases across Great Britain in all months while Priestly-Taylor, Makkink 292 
and Thornthwaite projected the smallest (Prudhomme and Williamson, 2013). 293 
Prudhomme and Williamson (2013) recommended the use of the FAO56 method 294 
which reproduced the reference MORECS PE data with greatest accuracy (when 295 
driven by the HadRM3-Q0 climate data) and was within the range of uncertainty 296 
defined by the ensemble of 12 PE equations. 297 
 298 
3.2 River flows and groundwater levels 299 
 300 
WCCRC 2012 reported regional and seasonal variability in projected river flows 301 
derived from various global climate models (GCMs), or ensembles thereof, which had 302 
been forced by different emissions scenarios, sometimes followed by differing 303 
downscaling approaches and subsequently methodologies for modelling river flows, 304 
all with associated uncertainties. Projections of seasonal river flows (i.e. increased 305 
winter flows, decreased summer flows and low agreement between models on the 306 
direction of change during spring and autumn) reported in WCCRC 2012 (by 307 
Christierson et al., 2012 and Prudhomme et al., 2012) are confirmed broadly by a 308 
subsequent study conducted by Sanderson et al. (2012). Sanderson used runoff data 309 
from an eleven-member regional climate model (RCM, HadRM3) ensemble (Jones et 310 
al., 1997) driven by the SRES A1B (i.e. medium emissions) scenario (Nakićenovć 311 
and Swart, 2000). Projected increases in winter flows are greater than decreases in 312 
summer flows, driving an overall increase in annual average river flow during the 21

st
 313 

century (Sanderson et al., 2012, also projected for the Eden catchment in Scotland by 314 
Ledbetter et al., 2012). This is in contradiction of Christierson et al. (2012) and 315 
Prudhomme et al. (2012); these authors projected smaller increases in winter flows 316 
and, therefore, little change in annual flow regimes. Notably, Sanderson et al. (2012) 317 
used runoff data generated within an ensemble of RCMs, as opposed to using the 318 
climate data output from the RCM to drive a conventional ‘offline’ hydrological 319 
model (e.g. Christierson et al., 2012 and Prudhomme et al., 2012). Furthermore, the 320 
eleven-member RCM data do not sample the full range of uncertainties (Murphy et 321 
al., 2009) (unlike the UKCP09 probabilistic projections used by Christierson et al., 322 
2012), and so the range of possible future river flows is likely greater than those 323 
projected (Sanderson et al., 2012).  324 
 325 
Drought projections reported in WCCRC 2012 were limited because studies had 326 
considered meteorological droughts (i.e. precipitation deficit; Garner et al., in press) 327 
predominantly. Prudhomme et al. (2014) investigated the effect of climate change on 328 
hydrological droughts (i.e. river flow deficit, Garner et al., in press) in a multimodel 329 
experiment in which seven global impact models (GIMs, which represent the 330 
terrestrial water cycle at global scale and incorporate current understanding of 331 
hydrological systems) were driven by seven GCMs under four representative 332 
concentration pathways (RCPs, each is a time-dependent projection of atmospheric 333 



greenhouse gas concentrations). Under RCP 8.5, Prudhomme et al. (2014) anticipate 334 
that drought frequency (proportion of time under drought conditions) and severity 335 
(defined as proportion of land under drought conditions) are very likely to increase 336 
across Western Europe by the end of the 21

st
 century. Two drivers of increased 337 

drought frequency and severity were identified: (1) the greatest increases were driven 338 
by decreased precipitation and increased evaporation, and (2) lesser increases were 339 
associated, paradoxically, with increased precipitation (up to 20%) that was offset by 340 
increased evaporation (Prudhomme et al., 2014). These projections are in agreement 341 
with Vidal and Wade (2009) and Rahiz and New (2013) but contradict Blenkinsop 342 
and Fowler (2007) (all reported in WCCRC 2012); the latter suggested that the 343 
longest meteorological droughts are likely to become shorter and less severe. 344 
 345 
WCCRC 2012 anticipated increases predominantly in flood magnitude controlled by 346 
climate and physical characteristics of river catchments (Prudhomme et al., 2013a; 347 
2013b). Kay et al. (2014a and 2014b) extended the work of Prudhomme et al. (2013a 348 
and 2013b; as reported in WCCRC 2012) to a larger set of catchments across Britain 349 
and projected regional impacts of climate change on 20-year flood flows during the 350 
21

st
 century. Predominantly, increases were projected between the 2020s and 2080s 351 

(also projected for the Derwent basin by Ramesen et al., 2014). For England and 352 
Wales, changes were greatest in the south east and smallest in the north east while 353 
impacts were described as median elsewhere (Kay et al., 2014a). For Scotland, 354 
increases were greatest but more uncertain in the north and west, and lower but less 355 
uncertain in the south and east (Kay et al., 2014b). A monotonic change in flood 356 
impacts throughout Britain is not anticipated; the range of impacts within Scotland 357 
was projected to be less severe than in England and Wales (i.e. no change < -5% or > 358 
+75%; the latter is projected for the 2080s in south eastern England) (Kay et al., 359 
2014b). Geographical variation in past river flows and, by extension projected river 360 
flows, is controlled by variability in climate and basin processes (Garner et al., in 361 
press). Charlton and Arnell (2014) applied the UKCP09 projections (for the 2020s, 362 
2050s and 2080s) to catchment models for six catchments representing a range of 363 
hydrological conditions in England. Their results suggest that the magnitude of future 364 
high flows may be especially sensitive to basin geology; Q5 (the flow that is exceeded 365 
5% of the time) could increase by 40-50 % in impermeable catchments compared to 366 
20% in permeable catchments. 367 
 368 
WCCRC 2012 reported on a handful of studies that investigated the impact of climate 369 
change on UK groundwater recharge (i.e. the downward vertical flux of water to the 370 
water table, Jackson et al., 2015). Typically, reductions in annual recharge are 371 
projected (Jenkins et al., 2002; Herrera-Pantoja and Hiscock, 2008; Jackson et al., 372 
2011). Previously unreported results of a study by Prudhomme et al. (2012) are 373 
presented by Jackson et al. (2015). Prudhomme et al. (2012) used two climate 374 
projection products: (1) the ensemble of eleven-member ensemble of the UK Met 375 
Office Regional Climate Model (HadRM3-PPE) as continuous time-series of climate 376 
variables from 1950 to 2099 (Prudhomme et al., 2013a), and (2) probabilistic 377 
projections of changes in climate variables as ensembles of 10,000 monthly change 378 
factors for the following three 30-year time-slice and greenhouse gas emission 379 
scenario combinations (i.e. 2050s and medium emissions scenario [A1B]; 2080s and 380 
medium emissions scenario [A1B]; and 2050s and high emissions scenario [A1F1] 381 
(Murphy et al., 2009)]. These climate projections were input to the distributed 382 
ZOOMQ3D groundwater model (of the Chalk aquifer) (Jackson et al., 2011) and to 383 



R-Groundwater (Jackson, 2012) lumped catchment groundwater models (of 24 384 
observation boreholes in four principal aquifer types: Chalk, Limestone, Sandstone 385 
and Lower Greensand across Great Britain). When the median values for the 386 
ensemble of 10,000 simulations are considered, annual groundwater levels are 387 
projected to decrease at 13 of 24 sites. For monthly values, the direction of change 388 
varied: (1) between sites, assumed to be driven by local hydrogeological conditions, 389 
and (2) between years, assumed to be due to inter-annually variable meteorological 390 
drivers. Prudhomme et al. (2012) reported projections forced by the A1F1 (high) 391 
emissions scenario; Jackson et al. (2015) compared these with projections forced by 392 
the A1B (medium) scenario in order to assess the sensitivity of the projected values to 393 
this source of uncertainty. However, the impact of multiple emissions scenarios on the 394 
projections was deemed to be small in comparison to the spread of uncertainty arising 395 
from the variability in the climate ensembles. Furthermore, there is some discussion 396 
but, as yet, no quantification of potentially substantial uncertainty that may arise from 397 
the models used to represent hydrological/ hydrogeological processes (Taylor et al., 398 
2015). Jackson et al. (2015) suggest that hydrological models are used preferentially 399 
over groundwater models and that they do not represent key groundwater processes 400 
adequately (e.g. delays in the transfer of water from the soil, through both the 401 
unsaturated zone and saturated zone, to surface waters and abstraction boreholes).  402 
 403 

3.3 River and groundwater temperature, quality and freshwater ecosystems 404 
 405 
The published literature contains no new projections of UK river and groundwater 406 
temperature since 2012. Consequently, there remains extremely little knowledge of 407 
how these properties of the UK freshwater environment will change over the 21

st
 408 

century. River temperature is anticipated to increase (Webb and Walling, 1992); but 409 
modifications are likely to be moderated by river basin characteristics, for example 410 
water source contributions, basin size (Garner et al., 2014a) and orientation (Hannah 411 
and Garner, 2015) plus density and extent of riparian shade (Garner et al., 2014b, 412 
2015). Worldwide, there are extremely few comprehensive projections of increases in 413 
groundwater temperature. For the Miramichi river system in central New Brunswick, 414 
Canada, Kurylyk et al. (2014) used seven downscaled global climate models for the 415 
period 2046-2065 to drive surficial water and energy balance models and, in turn, a 416 
variably saturated groundwater flow and energy transport model; groundwater 417 
temperature was projected to increase by up to 3.6 °C. 418 
 419 
There are no new projections of UK river or groundwater quality and, as was the case 420 
in 2012, projections are qualitative and somewhat speculative. Potential changes in 421 
precipitation intensity, water temperature and discharge are anticipated to have 422 
consequences for UK surface water quality with increased suspended solids, sediment 423 
yields, algal growth and nutrient concentration expected (Watts et al., 2015b). 424 
Potential changes in groundwater quality may be driven by changing recharge rates 425 
plus pollutant and nutrient transport (Watts et al., 2015b). 426 
 427 
Finally, the impact of projected climate change on freshwater ecosystems is 428 
understudied. This is likely because water-dependent organisms are influenced by 429 
various aspects of their habitat conditions, many of which remain poorly understood 430 
and for which there exist no projections of future change (see above). In a notable 431 
exception, Fung et al. (2013) used 246 transient climate series (based on one GCM) to 432 
generate an ensemble of illustrative (given the limited number of simulations) 433 



projected river flows in the Itchen (a Chalk basin in southern England) through the 434 
21

st
 century. The severity and duration (in years) of low flow events within the 435 

ensembles were used to identify qualitatively (after discussion with ecologists and 436 
catchment managers) the range of possible consequences for freshwater ecosystems 437 
based on invertebrate community responses. 40% of models suggested that there may 438 
be significant changes to freshwater invertebrate communities in the Itchen by 2075; 439 
while the remaining 60% of models suggested that communities may recover from the 440 
short-term impacts of low flow events (Fung et al., 2013). Consequently, the 441 
anticipated effects of anthropogenic climate change on freshwater ecosystems and 442 
potential spatial variations remain highly uncertain (Watts et al., 2015b). 443 
 444 

3.4 Summary of future projections 445 
 446 
The scientific literature published since WCCRC 2012 provides further evidence that 447 
the impact of anthropogenic climate change on the UK water environment may be 448 
significant. Further evidence suggests that changes in rainfall, evapotranspiration, 449 
riverflows and groundwater levels should be anticipated. The robust numerical 450 
framework within which these anticipated changes have been estimated and the 451 
consideration of multiple uncertainties provides high confidence limits to bound 452 
future projections. However, as was the case in 2012, a robust scientific evidence base 453 
to suggest future change in river and groundwater temperature, water quality and 454 
freshwater ecosystems is lacking severely and thus confidence in the nature of future 455 
changes is low.  456 
 457 
Confidence assessments for the level of agreement for potential future changes and 458 
the robustness of that evidence for each reviewed component of the UK water 459 
environment are provided in Table 2. Confidence assessments for the level of 460 
agreement in future projections were provided in WCCRC 2012. We have revised the 461 
assessment for evapotranspiration, from ‘low’ (because no projections existed) to 462 
‘medium’ following the generation of a set of projections from multiple methods and 463 
quantification of associated uncertainties. . 464 
 465 
4. OUTSTANDING RESEARCH NEEDS 466 

 467 
This review aimed to update the findings of WCCRC 2012 and thus provide further 468 
reliable, clear information about the possible impacts of climate change on hydrology 469 
and the water environment in the UK. In this section we identify the outstanding 470 
research needs to improve understanding of the water-related impacts of climate 471 
change. 472 
 473 
WCCRC 2012 identified several areas where research efforts should be focussed: (1) 474 
evapotranspiration, (2) low flows and drought, (3) summer convective storms and 475 
consequences for future flood, (4) groundwater temperature, (5) river and 476 
groundwater temperature and quality, and (6) aquatic ecosystems. Despite growth 477 
since 2012 of the scientific literature on climate change impacts on the UK water 478 
environment, there has been little research in these areas (summer convective storms 479 
are a notable exception, although the effects of improved modelling capability in this 480 
area have not been assessed on summer floods). Instead, there has been further 481 
research on areas (i.e. precipitation and high river flows/ flood) for which a 482 
(relatively) larger amount of information existed already. Consequently, more 483 



research in all of the areas identified as priorities in 2012 is still required. Importantly, 484 
the body of evidence for historical changes and the number of future projection 485 
studies shrink and uncertainties grow as we move down the hydroclimatological 486 
process chain and into the hydroecological process chain (see Tables 1 and 2).  487 
 488 
The disparity between historical evidence at the ‘top’ versus the ‘bottom’ of the 489 
hydroclimatological-hydroecological process chain has most likely occurred because 490 
there has been a lack of spatially and temporally extensive monitoring of variables 491 
towards the bottom of the chain. Furthermore, components of the water environment 492 
at the bottom of this process chain are influenced by multiple, interacting drivers and 493 
understanding of responses is poor, and so observed patterns are confounded by shifts 494 
in other drivers of change. Consequently, for most aspects of the UK water 495 
environment, adaptation to anthropogenic climate change may need to begin before 496 
changes can be formally attributed (Watts et al., 2015b). A disparity of evidence 497 
between the top and bottom of this chain exists also for projections. Poor knowledge 498 
of interacting drivers, responses and interactions at the bottom of the chain yields an 499 
insufficient evidence base from which to build predictive models capable of 500 
projecting the effects of anthropogenic climate change. Additionally, the discussed 501 
lack of spatially and temporally extensive data (and meta-data) does not allow 502 
validation of models. Finally, other than for precipitation and river flow, future 503 
projections of other hydrologically –relevant variables consider rarely uncertainties 504 
for estimates. For these other variables, there remains incomplete process 505 
understanding and/ or validation data, so making projections with confidence is made 506 
particularly challenging.  507 
 508 
WCCRC 2012 identified that most studies were site-specific whereas countrywide 509 
studies were most useful in providing decision-support for adaptive management. 510 
Again, there have been further large-scale precipitation and river flow (i.e. at the top 511 
of the hydroclimatological-hydroecological process chain) (for which existing 512 
information was relatively good) but a distinct lack of studies on other aspects of the 513 
water environment. Again, this is due predominantly to a lack of monitoring and 514 
(potentially) ease of access to archived data that may be held by several individuals. 515 
Such barriers to knowledge generation must be addressed and the impacts of climate 516 
change on all aspects of the UK water environment must be studied to provide robust, 517 
clear information to inform management and adaptation strategies going forward. 518 
 519 
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TABLES 819 
 820 
Table 1. Confidence assessment for observed historical changes in components of the 821 
UK water environment during the 20

th
 century. Each component is awarded a score of 822 

high (H) medium (M) or low (L). Scores address evidence for change but not whether 823 
this was driven by anthropogenic climate change 824 
 825 
Component of water 

environment 

Level of agreement Amount of evidence 

(type, amount, quality, 

consistency) 

Precipitation H M 

Evapotranspiration L L 

River flows L M 

Groundwater recharge 

and levels 

L L 

River water temperature M M 

River water quality and 

ecology 

L L 

Groundwater 

temperature and quality 

L L 

 826 
 827 
Table 2. Confidence assessment for projected future changes in components of the 828 
UK water environment over the 21

st
 century. Each component is awarded a score of 829 

high (H) medium (M) or low (L).  830 
 831 
Component of water 

environment 

Level of agreement Amount of evidence 

(type, amount, quality, 

consistency) 

Precipitation M M 

Evapotranspiration M M 

River flows L L 

Groundwater recharge 

and levels 

L L 

River water temperature M M 

River water quality and 

ecology 

L L 

Groundwater 

temperature and quality 

L L 
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