
Darwin 2009:

Hands-on activities

natural selection for Key Stage 2

Notes & pictures to accompany the activity sheets

Dave Cavanagh
Nikki Pickup
Laura Cavanagh
Institute for Animal Health
www. iah.ac.uk
dave.cavanagh@bbsrc.ac.uk

With thanks to:

The children and teachers of Compton Church of England Primary School, Compton, Berkshire, for being the first to do these activities

Colleagues Debbi Clayton, Michelle Hill, Aparna Jagannathan, Nikki Pickup, Sally Price & Karen Staines for helping to pilot these activities in Compton school, and Mick Gill for the peppered moth silhouette

Phil Smith and Carol Hince of the Teacher Scientist Network, Norfolk, for advice

- Born 12 February 1809, Shropshire
- Set sail on HMS Beagle, December 1831, as a scientist, for a 5-year around the globe voyage
- He described many amazing new animals and plants around the world

- He spent many years thinking about what he had seen
- Why were there so many different types of animals and plants?
- Why were there similar but not identical – creatures/plants in different places?
- Why had some creatures become extinct (he had observed some fossils)?

He concluded that:

- all animals and plants changed, by chance
- some variants were better fitted for their environment than others; they survived better
- they passed their characteristics to their offspring
- over a very long time many changes resulted in new species

Continued...

- sometimes a species became extinct, when it could not survive in a changed environment e.g. hotter, colder, wetter, drier
- he called this process "Natural Selection"
- it explained how living things evolved changed – over time

- Briefly talk about how scientists now know how natural selection and evolution occur;
 Darwin did not know this (next slide)
- The children will have come across mutants in films e.g. The X-Men and Jurassic Park. Ask about them first
- Ask questions whenever possible
- Use a black/white board

- We now know that it is our GENES, in our cells, that determine how we, and all creatures and plants, look.
- Genes are made of DNA.
- When cells divide the DNA is COPIED, so that each new cell has all its genes.
- MISTAKES occur RANDOMLY, BY CHANCE, during the DNA copying process.
- These mistakes are called MUTATIONS, producing MUTANT genes (changed genes), producing MUTANT creatures and plants.
- Most mutations do <u>not</u> result in any change to the body of an animal or plant.
- A few mutations do result in a change in the body.

Natural selection is possible because of mutant genes AND because the ENVIRONMENT CHANGES. (Ask what 'environment' means. Lots of answers are correct, including that our bodies are the environment for bacteria inside us.)

If a mutant gene (or a combination of mutant genes) produces an animal or plant with a changed body that enables it to grow/reproduce better than its relatives in the changed environment, then it will be more likely to survive than its relatives. It will be SELECTED by the ENVIRONMENT, NATURALLY.

In time, with increasing generations, the population of the organism changes; the mutants become the majority. The least successful relatives might die out

- With more generations, more mutations, more ENVIRONMENTAL CHANGE, the organism changes further.
- Eventually, after a very long time (millions of years), it has changed so much that it becomes a new SPECIES.
- We call this process of the development of new species EVOLUTION, a consequence of RANDOM MUTATION and NATURAL SELECTION by the environment.
- Mutants + changes in environment > natural selection of some mutants >>>> new species.

Activity 1 Very quick natural selection: development of

antibiotic resistance

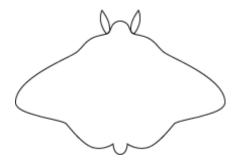
Activity 1 Very quick natural selection:

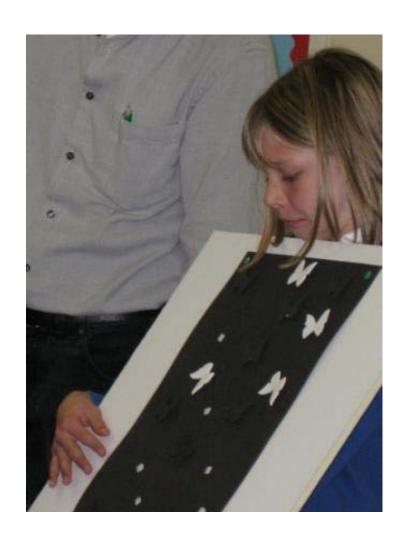
development of antibiotic resistance

Activity 1 Very quick natural selection: development of antibiotic resistance

The peppered moth. The change in the ratio of pale:dark forms of the peppered moth since the mid-19th century is a well studied case of industrial melanism; first, natural selection of dark (melanic) forms of an insect as the environment got dirtier during coal-burning industrial expansion and domestic use.

The situation has reversed since the Clean Air Act of the 1950s.


A good account is given by Dr Jim Mallett, University College London. Search on the internet for "Jim Mallett peppered moth" to get his article *The peppered moth: a black* and white story after all


November 2003 (updated January 2004)

The case for the peppered moth changing in the 19th and 20th centuries, and for environmental change being a selection mechanism (specifically a darkening of some vegetation) is overwhelming. Recent experiments confirm the earlier view that camouflage/predation is at least a part of the explanation.

Activity 2: peppered moth outline

To use as a template for cutting the shape

Activity 3 How we know what the dinosaurs looked like. How fossils were formed

Activity 3 How we know what the dinosaurs looked like. How fossils were formed

Activity 3 How we know what the dinosaurs looked like. How fossils were formed

Activity 4 Handling fossils

Activity 4 Handling fossils

Activity 4 Handling fossils

