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Introduction 

Effective agri-environmental policies are needed to ensure the sometimes opposing but crucially 

important goals of sustaining productive agriculture while maintaining landscape biodiversity and 

ecosystem services are met. The planned reform of UK agricultural policies following Brexit 

should support these goals while wrestling with the consequences for the sector from leaving the 

single market and the growing threat of climate change. 

 

This research project focuses on factoring biodiversity values and designing cost-effective 

spatially targeted agri-environmental schemes. This is achieved by focusing on farmers’ 

commitment to supporting ecosystem services where such services have the most significant 

impact. Data-driven tools are used to estimate the multifunctional value of natural landscapes and 

design contracts that support both biodiversity and flood management. The underlying concept is 

that of providing schemes that encourage and reward farmers for collaborating with their 

neighbours to maximise habitat gains from relatively small individual commitments. In this project 

some ways are proposed to limit the costs to the sector and ensure the greatest return on future 

public spending. This cutting-edge interdisciplinary research will interest a broad spectrum of 

academics researching agri-environmental- and ecological economics, ecology, environmental 



 

 

management, and land use policy. These include research staff at SEPA, Natural England and 

DEFRA, who have shown considerable interest in follow-up projects based on this line of 

research.  

 

Academics will also benefit from the estimation of land-use policy transaction costs. It is 

acknowledged that excluding transaction costs from analysis distorts considerably policy outcome 

forecasts. By quantifying the transaction costs of collaborative agri-environmental schemes via a 

discrete choice experiment and making them available to academics, our research will 

significantly improve the reliability of academic research into multifunctional land-use policy in the 

broadest possible sense. 

 

We have met most aims outlined in our initial proposal and are on track to meet the rest:  

a) Our systematic review of the literature, focusing on biodiversity values is included in this 

report, with a special focus on land management schemes and fragmentation of pollinator 

habitats. ;  

b) We present practical methodology for cost-benefit analysis of agri-environmental schemes 

for biodiversity conservation, and we have successfully run discrete choice experiments with 309 

farmers. ;  

c) Our DCEs and SDM reveal predictors of successful habitat connectivity improvement via 

ELM schemes.  

Despite delays due to the pandemic and difficulties reaching farmers to participate in the 

survey, we are on track to publish the results and associated spatial targeting maps in peer-

reviewed outlets in the coming year. 

2. Literature synthesis on biodiversity values 

Economists have long discussed the value of biodiversity (Brock and Xepapadeas 2003). Heal 

(2000) recognised that although biodiversity and associated “ecosystem services” may seem 

intuitively valuable and important, their market value is more ambiguous. Some studies (e.g. 

Costanza et al. 1997; Holling 2001) have focused on how natural resources may be extracted for 

short term economic gain at the expense of the long term health of ecosystems upon which those 

resources depend. These relate to the indirect use value of an ecosystem (Nijkamp et al. 2008), 

where it supports marketed natural resources. Due to the complexity of ecological systems, such 

values may not be obvious (Hanley and Perrings 2019). Attempts have also been made to 



 

 

estimate the recreational use value of biodiversity (Lundhede et al. 2014; Giguere et al. 2020), 

such as the value people put on the ability to witness animals and plants in their natural habitat 

(Yao et al, 2014, 2019) and nature reserve status of woodlands (Scarpa et al. 2000). Neither of 

these values is obvious to estimate. Revealed preference techniques, such as the travel cost 

method, are expensive and often impose limitations on the types of ecosystems that can be 

valued, such as those national parks that are subject of many recreational visits. Hedonic models 

have also been criticised because hedonic attributes are necessarily defined by the researcher 

and may not reflect what people consider salient (Vatn and Bromley 1994). 

 

Similarly, hypothetical contingent valuation methods may suffer from drawbacks such as 

hypothetical bias where willingness to pay for biodiversity is overstated. A second stated 

preference method, choice experiments, attempts to reduce hypothetical bias by presenting 

respondents with pre-defined options instead of open-ended elicitations of value. Research on 

these issues is ongoing, see, e.g. Carson (2012), Hausman (2012), Haab et al. (2013) and 

Johnston et al. (2017), and in this section we present values estimated with different methods. 

 

To define the universe for this literature synthesis, we initially searched for peer-reviewed 

research without geographical constraints, ecosystem service or valuation method. The search 

string “subject CONTAINS ‘biodiversity’ AND ‘economic’ AND ‘value’” were entered into the 

Durham University library database and returned 1,632 article results. Figure 2.1 summarises the 

300 most relevant results in terms of year of publication and journal.  

 



 

 

 

Figure 2.1: Evolution of publications on the valuation of biodiversity  

As figure 2.1 shows, since the early 2000s the peer-reviewed literature on biodiversity values has 

grown rapidly, from a rather negligible output. A Web of Science review by Porto et al. (2020) with 

a sample of 100 identifies publication peaks in 2013, 2014, and 2016. The proportion of research 

published in economics journals has remained relatively stable at around 35%. Ecological 

Economics (Elsevier) accounts for the large majority of economics publications on the topic, 

followed by Environmental & Resource Economics (Springer) and the American Journal of 

Agricultural Economics. The remaining research is published in a variety of ecology and 

conservation journals. Figure 2.2 shows the evolution of empirical methods over time within our 

sample. Among empirical valuation research, analysis attributing biodiversity to crop yields and 

contingent valuation methods are most common. Discrete choice experiments and revealed 

preference methods are rare, accounting for only circa 2% of sampled articles. Articles that did 

not include in either their title or abstract a reference to an established valuation method, but were 

theoretical or exploratory in nature, were excluded in the next step. 

 



 

 

 

Figure 2.2: Evolution of valuation methods over time 

For the literature synthesis, we moved on with the following procedure: We limited the scope to 

insect pollinators and the economic value of pollination. We motivate this restriction on the 

following grounds: 

 

● Hanley and Perrings (2019) identify pollination as a key ecosystem service contingent on 

biodiversity and a determinant of ecosystem function; 

● A previous UK study links changes in land use to a decline in pollinator populations 

(Donkersley et al. 2014); 

● We model the impact of our proposed agri-environmental scheme on honeybees in the 

UK using species distribution modelling 

 

From the initial sample of 1,632 articles, we further restrict the sample with the query “subject 

CONTAINS ‘pollinator’ OR ‘pollination’ AND any field CONTAINS ‘biodiversity’”, returning 53 

results, of which 16 focused on the honeybee (genus: Apis). The most represented journals were 

Ecological Economics and Economic Entomology. The sample includes both stated preference- 

(Breeze et al. 2015) and yield analysis studies (Breeze et al. 2021, Garratt et al. 2014). Yield 

analysis can be done by estimating the market value of the pollinated crop share, described in 

Breeze et al. (2021) as the [pollination] dependency ratio. 

 



 

 

In a literature review, Klein et al. (2007) show that pollinators impact food supply globally, as 

pollinator-dependent crops contribute to ~35% of overall crop production by volume. It is 

estimated that 87 of the 115 major crops grown worldwide depend on biotic pollination to set fruits 

and seeds to at least some degree. Globally, the economic value of pollination is estimated at 

US$225 billion (Giannini et al., 2015). Pollination is essential for farming apples, cacao and vanilla 

and of great importance for buckwheat, pears, and berries. (Klein et al. 2007) The use of animal 

pollinated biofuel crops is growing, with the cultivation area of oilseed rape, sunflowers and 

soybeans increasing by 4.2 million hectares (32%) across Europe between 2005 and 2010 

(Breeze et al. 2014). The pollination dependence rankings across crops shown in Klein et al. 

(2007) also need to be evaluated in the context of their total economic value. For example, Breeze 

et al. (2021) show that 50% of the UK pollination benefit come from oilseed rape and strawberries. 

While pollinator dependence for the former is moderate, it is widely grown. 

 

Powney et al. (2019) and Potts et al. (2016) present data showing a reduction of wild pollinator 

populations at the regional level, especially within Europe and North America. Most studies focus 

on bees, particularly honeybee and bumblebee species, with a smaller number involving 

hoverflies and lepidopterans. The causes of pollinator decline include the indiscriminate use of 

pesticides, biological invasions, genetically modified (GM) crops, intensification and expansion of 

agricultural practices and parasites (Dicks et al. 2016; IPBES 2016; Potts et al. 2016), as well as 

habitat loss and fragmentation associated with farming and urbanisation (Potts et al. 2010; 

Donkersley et al. 2014; Xiao et al. 2016). Properly targeted agri-environmental schemes provide 

measurable improvement in fragmented landscapes (Donald and Evans 2006). Understanding 

how land management affects pollinator abundance and diversity in combination with other 

drivers is necessary to design more targeted, adaptive management strategies at national scales 

(Garibaldi et al., 2020). 

 

Analysis of cropland in the UK since 1984 indicates that insect-pollinated crop area has risen by 

57.5%, covering 848,946 hectares of UK cropland in 2007, growing at an average rate of 21,250 

ha per year. This represents 20.4% of the 2007 UK cropland. Recent research suggests that the 

occupancy of bee and hoverfly species has declined by an average of 25% across Britain since 

1980, particularly among specialist species (Powney et al., 2019). A comparative study of 

European honeybee colonies showed that while there were honeybee deficits (insufficient stocks 

to supply 90% of national demands) in 23 countries in 2005 and 22 in 2010, only the UK and 

Moldova had a pollinator stock capacity below 25%. (Breeze et al., 2014)  



 

 

 

If pollination services decline, then prices for insect-pollinated crops will rise due to their lower 

yields. This will result in a loss of economic welfare as people are forced to pay more to obtain 

the same quantity of these crops, limiting their capacity to spend their money on other goods and 

services.  

From our sample of 53, we exclude non-empirical research and restrict our sample further to 

studies carried out in the UK. The values are summarised in table 2.1. The total contribution of 

pollinators to UK agricultural value is estimated between £188.7M and £379M per year. This 

represents between 1.7% and 3.5% of total crop values in 2021 (UK Government 2022). In a 2020 

synthesis of the international pollination values, Porto et al. (2020) find that across a sample of 

100 articles, the economic benefits of pollination services have not yet translated into targeted 

policymaking. 

 

Table 2.1: Summary table of UK pollinator values 

Article Crop Method Published value 

Breeze et al., 2021 Total Yield Analysis £188.7M/year 

Breeze et al., 2015 Total SP £379M/year 

Garratt et al., 2014 Apples Yield Analysis £36.7M/year 

Garratt et al., 2016 Apples Field survey £91.2M/year 

 

Note: The articles in Table 2.1 were selected from the 16 that empirically presented values of 

honeybee pollination by restricting the sample further to studies from the UK.  

3. Methodology 

As set out in our initial grant proposal and in the following project execution, we followed two 

separate but complementary methodological approaches within the scope of the awarded grant. 

First, we carried out two discrete choice experiments (DCE) with a sample of 309 farmers in 

northern England, mostly from Cumbria and Northumberland. The DCEs aimed to estimate 

farmers’ willingness to participate in an environmental land management scheme to create habitat 

patches in agricultural landscapes.  

 



 

 

DCEs were first used to value environmental resources by Adamowicz et al. (1994) and have 

since been a popular method due to limited market data for environmental services (Hoyos 2010). 

Our proposed scheme is designed to be conceptually similar to the proposed Landscape 

Recovery scheme piloted by Defra in 2022 and planned to launch in 2024 (Defra 2022). The 

Landscape Recovery scheme will provide funding for long-term, large-scale projects that “restore 

priority habitats, improve habitat quality, and increase species abundance” in England by, e.g. 

building or linking nature reserves, creating woodlands, or improving habitat connectivity (Defra 

2022). Additionally, on top of an annual grant payment, our scheme features a bonus for 

coordinating with one or more neighbouring farmers to connect habitats with strips of set-aside 

land that improve connectivity (Correa Ayram et al. 2016).  

 

Second, we estimate the effect of land use choices on honeybee abundance through species 

distribution modelling. We will combine the two methods in a future project in which we produce 

a cost-benefit analysis of the spatially targeted land management scheme. The scheme's cost is 

obtained from the DCE, in which we estimate the payment farmers require to participate. The 

benefit is taken from the literature review of pollination values and the outcome from the species 

distribution model. We will next present our hypotheses. The following sections will describe these 

methods in turn. 

3.1 Hypotheses 

Scheme 1 involves an annual payment to create NFM features on retired land, either by planting 

trees or by natural regeneration, as detailed in the proposed hypothetical contract between 

agency and farmer. No coordination is involved. Scheme 2 includes a coordination bonus to 

connect NFM features via ecological corridors between farms. 

 

Since retiring farmland to create natural features carries an opportunity cost from the lost 

agricultural output, we expect farmers to require compensation to participate in the schemes. We 

refer to the required compensation as the reservation price or “willingness to accept”. It follows 

that a higher opportunity cost should result in a higher reservation price, e.g. to create features 

on high-yield farmland over rough, steep grazing or in the middle of a field instead of along farm 

boundaries or river edges. Conversely, small farms where agriculture is not the primary source of 

household income, face lower opportunity costs and are expected to enrol at lower level of 

compensation.  

 



 

 

Crucially, we seek to study the willingness to collaborate with neighbouring farmers to improve 

habitat connectivity. We expect that more established social ties with neighbours lowers the cost 

of communicating, negotiating, and coordinating the creation and maintenance of ecological 

corridors. We differentiate between general social ties evaluated via self-rated engagement in the 

community and farming/specific collaboration. Farmers with strong social networks are likely more 

willing to participate in schemes involving coordination. 

3.2 Discrete choice experiment 

A discrete choice experiment is a survey in which respondents are asked to choose their preferred 

option from a set of discrete alternatives. Each option is associated with a set of characteristics, 

or attributes, that differentiate it from the other options. The theoretical foundation for DCEs is 

hedonic consumer theory (Lancaster 1966), in which goods or services can be broken down into 

attributes that each contribute differently to an individual’s utility from consuming that good or 

service. The respondent’s choices are assumed to be determined by their tradeoffs between the 

attributes, and the respondent is expected to choose the alternative that maximises their net utility. 

Respondent i’s utility for each alternative j is assumed to be continuous and a function of the 

attributes k and their associated so-called attribute coefficients.  

𝑢𝑖𝑗 =  ∑ 𝐱𝑘𝑗′𝜷𝑘𝑖 + 𝜀𝑖𝑗

𝐾

𝑘=1

 

 

From the perspective of the researcher utility is stochastic, as the unobserved utility terms 𝜀𝑖𝑗  are 

independently Gumbel-distributed across alternatives and respondents. The attribute coefficients 

or “attendance” 𝜷 describe the importance a respondent assigns to each attribute. A positive 

coefficient implies that an increase in a (continuous) attribute improves utility and raises the 

probability of the alternative being chosen. Categorical attributes measure the shift in probability 

of choice from some baseline value. (McFadden 1974) Attributes of another alternative or even 

the existence of another alternative should not enter the utility of alternative j. This ensures 

consistency with utility maximisation, where improvements in one attribute can compensate for a 

worse performance for another attribute. Of course, the probability of choosing an option still 

depends on the existence and attributes of other alternatives. The coefficients were estimated 

using conditional logit model (Train 2009). 

 



 

 

The specification of alternatives and attributes into “choice tasks” is the DCE design. The design 

aims to maximise efficiency, or the information obtained about the respondent’s preferences. We 

obtain a D-efficient design by assigning uniformly distributed priors for the coefficients and 

choosing the design which minimises the determinant of the variance-covariance matrix, the D-

error (Sandor and Wedel 2001, Scarpa and Rose 2008, Rose and Bliemer 2009). It is the most 

widely used measure of efficiency because of its insensitivity to the magnitude of the scale of the 

parameters (Street 2005). By anchoring the alternatives in our choice experiments with real-life 

ELM schemes and by reference to economic theory (Parkhurst and Shogren 2007, Polasky et al. 

2008) and recent UK studies (Hurley et al. 2022, Coyne et al. 2021), we improve the accuracy of 

our priors. When priors are well informed, efficient designs are also likely to produce the smallest 

errors (Ferrini and Scarpa 2007). 

 

Respondents were asked to choose their preferred option from two schemes and a status-quo 

alternative reflecting nonparticipation. Each choice experiment consisted of a block of eight choice 

tasks, assigned in a random order. Deciding on the number of choice tasks is a tradeoff between 

insufficient statistical power (increasing the likelihood of type II errors) and cumulative respondent 

fatigue, which may increase error variance. To navigate this tradeoff, we follow the procedure in 

de Bekker-Grob et al. (2015) and set the target sample size at 300 as per our project proposal. 

With eight choice tasks, achieving a likelihood of type II errors below 5% requires a minimum 

sample of 278 for DCE 1 and 291 for DCE 2. The order between DCE 1 and 2 was also 

randomised among respondents to minimise any bias resulting from respondent fatigue (Johnston 

et al., 2017). Example choice cards are shown in the appendix. 

 

We recruited participants from the north of England to participate in the survey, including mostly 

from the following counties: Cumbria, Northumberland and County Durham. Farmers were 

identified from the county electoral rolls and contacted via mail. Invitations to participate were 

mailed out in two rounds approximately three weeks apart to 2,401 addresses. In addition, 

reminders were sent out once via email and phone call to individuals who had indicated interest 

by responding to the advert but had not completed the survey. The survey was administered on 

a screen via surveying software Qualtrics. It contained an initial set of questions focusing on 

respondents’ demographic, economic, and social attributes, followed by three choice experiments 

involving variants of the ELM scheme. While most were completed remotely online, we also 

administered 36 surveys in person to include farmers who were unfamiliar with web-based survey 

participation. These were either conducted in focus groups or individually at the respondent’s 



 

 

home. In-person surveys were more costly but allowed us to reach a wider set of respondents 

and clarify any ambiguities in the survey presentation.  

3.2.1 Scheme 1: Habitat creation only 

Scheme 1 involves an annual payment to create habitat features on retired land, either by planting 

trees or by natural regeneration, as per the contract. Table 3.1 shows the first choice experiment's 

attributes, attribute levels, priors and variable descriptions. Respondents weighed the perceived 

tradeoff between the annual payment amount, the size of the land parcel to be set aside, and the 

type of habitat to create. Priors about coefficients for type, location, land quality and area were 

based on the expected cost of creating the feature(s) and the opportunity cost of retired land in 

terms of lost agricultural output. The prior for payment is trivially positive.  

 

Table 3.1 

Attribute Description Levels Prior 

Type [Dummy] The type of 
habitat to participants 
of the scheme must 
create 

[0] Planted trees 
[1] Natural 
regeneration 

U(0.01, 0.5) 

Location [Categorical] The 
type of land on the 
respondent’s farm to 
be used in the 
scheme 

[0] In-field 
[1] River edge 
[2] Field boundary 

[1] U(0.01, 0.5) 
[2] U(0.51, 1) 

Land quality [Dummy] The 
agricultural quality of 
land to be used in the 
scheme 

[0] Prime grazing land 
or high-yield crops 
[1] Rough grazing, 
wet, steep, rocky or in 
a dip, etc. 

U(0.01,0.5) 

Area [Continuous] The 
area to be set aside 
in square metres 

[500, 1,000] U(-0.5, -0.01) 

Payment [Continuous] Annual 
payment received to 
participate in the 
scheme (£) 

[200, 300, 400, 500] U(0.01, 0.5) 

 



 

 

3.2.2 Scheme 2: Habitat connectivity 

Scheme 2 adds a so-called agglomeration bonus provision (Banerjee 2018) to scheme 1. The 

agglomeration bonus is an additional one-off payment to farmers who coordinate with one or more 

neighbours to connect habitats on their respective lands with ecological corridors, strips of retired 

land that improve the habitat connectivity of the landscape. Burkle et al. (2013) found that only 

24% of original pollinator-plant interactions remained after loss of connectivity. Such losses are 

particularly destructive to specialist species (Xiao et al. 2016). The total bonus payment for 

coordination increases with the number of participants to compensate for rising coordination 

costs. Figure 3.1 illustrates how these feature-connecting corridors would work between two 

farms. Our priors for the effects of corridor width and number of collaborators are negative, as 

such corridors are expected to be more costly to construct and coordinate, respectively. 

 

On the other hand, farmers well integrated in the local farming community and who already 

collaborate with neighbours in farm activities are expected to be more willing to participate in the 

scheme. Overall, we expect younger and more educated farmers to be more aligned with 

environmental concerns and, therefore, more willing to participate. However, older respondents 

may have more established social networks. Therefore, our survey includes questions to gauge 

respondents’ social ties with local farmers to disentangle these effects. 

 



 

 

 

Figure 3.1 Corridors connecting natural features across two farms 

 

  



 

 

Table 3.2 

Attribute Description Levels Prior 

Type [Dummy] The type of 
habitat participants of 
the scheme must 
create 

[0] Planted trees 
[1] Natural 
regeneration 

U(0.01, 0.5) 

Coordination [Categorical] The 
number of 
neighbours to 
coordinate with 

[0] No coordination 
[1] One neighbour 
[2] Two neighbours 

[1] U(-0.01, -0.5) 
[2] U(-0.51, -1) 

Corridor width [Dummy] The width of 
the ecological 
corridor  

[0] 10 meters 
[1] 20 meters 

U(-0.5, -0.01) 

Bonus [Continuous] One-off 
bonus received per 
coordinating farmer 

[200, 300, 400, 500] U(0.01, 0.5) 

Payment [Continuous] Annual 
payment received to 
participate in the 
scheme (£) 

[200, 300, 400, 500] U(0.01, 0.5) 

 

3.3 Species distribution modelling 

While DCEs can inform the costing part of a cost-benefit analysis of agri-environmental schemes, 

the ecological benefits must also be quantified. To this end, we estimate the effect of the potential 

of our proposed schemes to increase the range of pollinators using species distribution modelling 

(SDM). This is a technique commonly used in ecology and environmental science to estimate the 

habitat range of a species and to do an impact assessment of environmental change (human-

caused or otherwise) on natural habitats. The methodology and framework were summarised in 

reviews (Franklin 1995; Guisan and Zimmermann 2000, Zimmermann et al. 2010), still widely 

used as references in the modelling literature. 

 

SDM requires minimum spatial (geocoded) data of species observations and environmental 

variables such as temperatures, precipitation, elevation, and land cover. Additional variables of 

human influence may be added. These predictor variables come in raster format, where the 

resolution determines the number of cells, and hence the area of each cell. Since it is considerably 



 

 

more expensive to prove the absence of a species at a location, much of the species distribution 

literature relies on presence-only data, e.g. from citizen science surveys.  

 

We collect occurrence data on the Western honeybee (Apis mellifera) from the UK National 

Biodiversity Network (NBN) records. These are the most comprehensive, open-access source of 

biodiversity data for the UK and have been used in earlier SDM studies (Rodriguez-Rey et al., 

2021, Petrovan et al., 2020). Data for 2019 was downloaded (to avoid surveying disruptions due 

to covid-19) and restricted observations to the catchment area for DCE respondents. While 

concerns have been raised about the risk of geographic sampling bias in citizen science records 

(Kramer-Schadt 2013), recent findings by Petrovan et al. (2020) suggest that SDM based on NBN 

records did not significantly skew habitat predictions in favour of urbanised areas.  

 

We use maximum entropy (MaxEnt) modelling (Phillips et al., 2006) to predict the habitats of the 

western honeybee. MaxEnt has become a rather popular tool to model the potential distribution 

of rare or threatened species of conservation concern, separate ecological niches, and forecast 

future distributions under environmental change (Polce et al. 2013, Agguire-Gutierrez et a. 2017). 

MaxEnt uses the principle of maximum entropy to relate presence-only data to environmental 

variables to estimate a species’ niche and potential geographical distribution (Phillips et al., 2006). 

Two types of probability distributions are sampled: First, the distribution of presences over the 

background variables and second, the distributions of background variables over the study area. 

The principle of maximum entropy is invoked to find the most uniform distribution given the means 

of background variables across pixels where the species is present (Elith et al., 2011). MaxEnt is 

popular because it is easy to use and it produces robust results with sparse, irregularly sampled 

data and minor location errors (Kramer-Schadt et al. 2013).  

 

Predictor variables are the monthly minimum and maximum temperatures, precipitation (Polce et 

al. 2014), land use, distance to freshwater, air pollution (PM2.5), and population density. In 

addition, climate variables were obtained from the HadUK-Grid (Met Office 2018) and land use 

rasters from Land Cover Map (2019). Figure 3.2 shows the distribution of land use in our study 

area, along with a sample of surveyed farms. 

 



 

 

 

Figure 3.2 Land use and a sample of areas surveyed (250m resolution) 

4. Results 

309 farmers completed the survey and the 2 choice experiments. A sample of farm locations is 

shown in figure 3.2. Approximately two-thirds of respondents were male, and the average age 

was 53. The average farm size was 231,7 hectares, which is larger than the regional averages, 

which range from 93 to 144 hectares (Defra 2021). A majority (72%) also reported that farming 

was their primary source of income. 54% of respondents are currently enrolled in some type of 

agri-environmental scheme. 50% of respondents who submitted an address were in Cumbria, 

31% in North Yorkshire, 11% in Lancashire, and 9% reside in other English counties. Just over 

15% of respondents had only GCSE-level education, while 18% had completed secondary school. 

32% had completed a university degree, compared with 40.6% among the general working-age 

population (ONS 2021). The natural features also contribute to natural flood management by 

increasing surface roughness and preventing runoff, and willingness to participate may stem from 

perceived flood risk. When asked to rate their own concern about flooding in the catchment, 28% 

of respondents were not concerned at all, while 6% were very concerned.  

 

 



 

 

 
Figure 4.1 Geographic distribution of survey respondents. Note: Figure 4.1 represents an 

incomplete sample as not all respondents were possible to match with valid Ordnance Survey 

postcodes 

 

4.1 Discrete choice experiments 

 

Table 4.1 shows the results obtained from the first of the 2 choice experiments (DCE 1). Effects 

are interpreted as the average change in compensation required (or willingness-to-accept) to pick 

a particular alternative as the attribute changes, either continuously or (in the case of categorical 

attributes) compared to a baseline level. WTA for socioeconomic and demographic variables 

represent the change in compensation required to participate in the scheme.  

 

DCE 1 shows that the location of the natural features, in general, was considered more important 

than the quality of land retired. Respondents require, on average, £232 less compensation per 

year when offered a scheme with features along field boundaries compared to when the proposed 

feature is located within the middle of fields; and £271 less when the proposed features are 

located along river edges. Comparatively, high-quality land (high-yield crop growing, prime 

grazing) is only valued at £36 per year 3.60 over low-quality land. Controlling for location, land 

quality and feature type, the average marginal reservation price for land is £1.80 per square metre.   

 

In line with our priors, farmers who already participate in real agri-environment schemes are 

associated with lower costs and a higher likelihood of opting into our proposed schemes than a 



 

 

status quo alternative. Similarly, having a higher level of educational attainment lowers the barrier 

to uptake by £21221.15 for GCSEs to £35935.39 for A-levels, depending on education level 

attained. Farm size was negatively correlated with willingness to participate. Since farm size was 

also positively correlated with stating farming as the primary source of household income, we 

hypothesise that larger farms are more reliant on income from agriculture and therefore demand 

more compensation (£14.60 - £57.80) to retire productive land. However, the effect of primary 

income has a low significance effect (p-value = 0.055), as has the correlation between farm size 

and primary farm income. 

 

Table 4.1 DCE 1 MNL results 

Variable Effect on WTA  
(£/year) 

Standard errors Categorical 
Baselines 

Planted trees 85 22.7 (***) Natural regeneration 

River edge -271 38 (***) In-field 

Field boundary -232 38 (***) In-field 

High-quality land 36 21.6 (**) Poor quality land 

Feature size (square meters) 1.80 0.4 (***)  

Socioeconomic and demographic variables 

AES participation -247 51.3 (***)  

Age (years) 7.40 2.1 (***)  

Farm tenure (years) -3.18 1.8 (*)  

GCSEs or equivalent -243 68.7 (***) No formal qualification 

A levels or equivalent -361 76 (***) No formal qualification 

Undergraduate degree -282 66 (***) No formal qualification 

Postgraduate degree -351 92 (***) No formal qualification 

Farm size (hectares) 0.1 0.04 (***)  

Primary income 87 54.6 (*)  

Self-rated community 
participation 

-69 24.1 (***)  



 

 

Note: p-value < 0.01 (***), 0.05 (**), 0.1 (*) 

 

Results for the second choice experiment featuring a scheme with coordination are shown in table 

4.2. Coordinating with two neighbours was perceived as more costly than no coordination. 

However, the estimated shift in WTA was smaller than expected, with no significant preference 

for no coordination requirements over coordination with one neighbour. The average respondent 

required higher annual compensation (£157) to consider a scheme requiring wider corridors (20m 

over 10m), as well as features of planted trees over natural regeneration (£118).  

 

As with the first scheme, current AES participation and academic attainment correlated with a 

greater likelihood of participation and lower WTA estimates. Self-rated community participation 

(assessed with a Likert scale from 1 to 5, rating respondents’ degree of social engagement in the 

local community) was not significantly associated with a shift in the WTA. Instead, sharing farm 

equipment with neighbouring farmers made respondents more willing to opt into the scheme. 

These results indicate that unlike the scheme without collaboration, willingness to coordinate to 

improve habitat connectivity is not driven by general ties to the community but by lower 

coordination costs from having collaborated with individual farmer neighbours in the past. 

 

Table 4.2 DCE 3 MNL results 

Variable Effect on WTA  
(£/year) 

Standard errors Categorical 
Baselines 

Planted trees 118 21.2 (***) Natural regeneration 

Coordination (1 neighbour) -26.30 23  No coordination 

Coordination (2 neighbours) 54 28 (**) No coordination 

20 m corridor width 157 22.5 (***) 10 m corridor width 

Coordination bonus -0.23 0.08 (***)  

Socioeconomic and demographic variables 

AES participation -226 42.7 (***)  

Age (years) 10.60 2.1 (***)  

Farm tenure (years) -4.5 1.6 (***)  



 

 

GCSEs or equivalent -229 56.7 (***) No formal qualification 

A levels or equivalent -144 52.1 (***) No formal qualification 

Undergraduate degree -406 63 (***) No formal qualification 

Postgraduate degree -329 76 (***) No formal qualification 

Farm size (hectares) 0.02 0.04   

Self-rated community 
participation 

4.8 18.9  

Shared boundaries 21 5.1 (***)  

Sharing equipment -146 40.1 (***)  

Note: p-value < 0.01 (***), 0.05 (**), 0.1 (*) 

4.2 Species distribution model 

A maximum entropy (Maxent) model was run on the NBN presence data for the Western 

honeybee, based on the following predictors: Monthly maximum and minimum temperatures, 

precipitation (Polce et al. 2014), land use categories, distance to rivers and streams, population 

density, and air pollution. Raster resolution was 25m, and data for 2019 were used. Figure 4.2 

shows the cross-validation metric used to evaluate the model's predictive accuracy. The true 

positive rate (TPR), also known as sensitivity, is defined as the ability of the model to correctly 

predict a presence; hence: TPR = true presences / (true presences + false absences). Similarly, 

the false positive rate (FPR) is defined as FPR = false presences / (false presences + true 

absences). Maximising TPR - FPR improves predictive accuracy (Hijmans 2012) and is 

represented in Figure 4.2 as an AUC score closer to 1. The AUC = 0.5 line represents a fully 

random prediction. 

 



 

 

 

Figure 4.2 Predictive accuracy for Apis mellifera Maxent model 

 

Figure 4.3 shows each environmental variable's contribution to the final prediction accuracy. Land 

use produces the best prediction on its own and reduces accuracy the most when left out of the 

model. Distance to freshwater and population density also significantly reduce accuracy when left 

out. Winter minimum temperatures (November - February) are also important predictors, as an 

entire hive can collapse if the queen does not survive the cold season. Cold summers with high 

precipitation are also negatively associated with presence, as is the distance to a river or lake.  

 

As shown in Figure 4.3, arable farmland (category 3) is considerably less suitable to the species 

than broadleaved woodland (category 1) and acid grassland (category 7)1. Urban- and semi-urban 

(20 and 21) are also identified as suitable but lose some significance when controlling for 

population density, which can be attributed to higher sampling intensity in populated urbanised 

areas. These results indicate that converting arable farmland to broadleaved (planted) woodland 

or grassland. 

 
1 See Morton, D.; Marston, C. G,; O’Neil, A. W.; Rowland, C. S. (2020). Land Cover Map 2019 (25m 

rasterised land parcels, GB). NERC Environmental Information Data Centre. 
https://doi.org/10.5285/f15289da-6424-4a5e-bd92-48c4d9c830cc for a dictionary on land use classes. 
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Figure 4.2 Variable contribution to predictive accuracy 



 

 

 
Figure 4.3 Response of bee presence to land use category 

 

5. Conclusion  

Initial results from our project have found that an annual payment of between £200 and £500 

could incentivise farmers in the north of England to create natural features of 500-1000 square 

metres in their land and that a one-off coordination bonus can facilitate coordination between 

neighbours that results in improved habitat connectivity. To encourage uptake and flexibility for 

farmers, such corridors should be as narrow as possible while maintaining connectivity benefits. 

On average, younger, more educated farmers with previous exposure to government ELM 

schemes were more likely to participate in our proposed schemes. Farmers who share farm 

equipment with their neighbours were also comparatively more likely to agree to connect features 

with a neighbour and required lower compensation. On the cost side, schemes involving natural 

regeneration along field edges will likely require the smallest government transfers. 

 

On the benefits side, the literature review indicates that protecting pollinator communities could 

save the UK between £189 - £378 million in averted yield losses from pollinated crops. Species 

distribution modelling with the MaxEnt approach shows that arable farmland is the least suitable 

for honeybee communities among the 19 distinct land use categories available. While sampling 

bias and sources and extent of taste heterogeneity must be better addressed in our upcoming 

work, the preliminary results suggest that ELM schemes of the type proposed here could be 



 

 

effective in providing well-targeted improvements in habitats. In the upcoming work in progress, 

we will extend these results by improving the model and estimating the marginal effect on habitats 

from growing patches of woodland and grassland by converting arable land. As we can simulate 

such conversion for any 25m pixel in our land use data, we will be able to show where positive 

effects are most pronounced. This, combined with estimates of likely costs from our choice 

experiments, can provide policymakers with a tool to evaluate spatially targeted schemes. 

References 

Adamowicz, W., Louviere, J. and Williams, M., 1994. Combining revealed and stated preference 
methods for valuing environmental amenities. Journal of environmental economics 
and management, 26(3), pp.271-292. 

Aguirre‐Gutiérrez, J., Kissling, W.D., Biesmeijer, J.C., WallisDeVries, M.F., Reemer, M. and 

Carvalheiro, L.G., 2017. Historical changes in the importance of climate and land use 
as determinants of Dutch pollinator distributions. Journal of Biogeography, 44(3), 
pp.696-707. 

Banerjee, S., 2018. Improving Spatial Coordination Rates under the Agglomeration Bonus 
Scheme: A Laboratory Experiment with a Pecuniary and a Non‐Pecuniary 

Mechanism (NUDGE). American Journal of Agricultural Economics, 100(1), pp.172-
197. 

Breeze, T.D., Bailey, A.P., Balcombe, K.G., Brereton, T., Comont, R., Edwards, M., Garratt, 
M.P., Harvey, M., Hawes, C., Isaac, N. and Jitlal, M., 2021. Pollinator monitoring 
more than pays for itself. Journal of Applied Ecology, 58(1), pp.44-57. 

Breeze, T.D., Bailey, A.P., Potts, S.G. and Balcombe, KG, 2015. A stated preference valuation 
of the UK's non-market benefits of pollination services. Ecological Economics, 111, 
pp.76-85. 

Brock, W.A. and Xepapadeas, A., 2003. Valuing biodiversity from an economic perspective: a 
unified economic, ecological, and genetic approach. American Economic Review, 
93(5), pp.1597-1614. 

Burkle, L.A., Marlin, J.C. and Knight, T.M., 2013. Plant-pollinator interactions over 120 years: 
loss of species, co-occurrence, and function. Science, 339(6127), pp.1611-1615. 

Carson, R.T., 2012. Contingent valuation: A practical alternative when prices aren’t available. 
Journal of economic perspectives, 26(4), pp.27-42. 

Correa Ayram, C.A., Mendoza, M.E., Etter, A. and Salicrup, D.R.P., 2016. Habitat connectivity 
in biodiversity conservation: A review of recent studies and applications. Progress in 
Physical Geography, 40(1), pp.7-37. 

Costanza, R., d’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., 
Naeem, S., O’neill, R.V., Paruelo, J. and Raskin, R.G., 1997. The value of the 
world’s ecosystem services and natural capital. Nature, 387(6630), pp.253-260. 

Coyne, L., Kendall, H., Hansda, R., Reed, M.S. and Williams, D.J.L., 2021. Identifying economic 
and societal drivers of engagement in agri-environmental schemes for English dairy 
producers. Land Use Policy, 101, p.105174. 



 

 

de Bekker-Grob, E.W., Donkers, B., Jonker, M.F. and Stolk, E.A., 2015. Sample size 
requirements for discrete-choice experiments in healthcare: a practical guide. The 
Patient-Patient-Centered Outcomes Research, 8(5), pp.373-384. 

Defra, 2021. Defra Statistics: Agricultural Facts England Regional Profiles. 

Defra, 2022. Environmental Land Management schemes: overview, available online at 
https://www.gov.uk/government/publications/environmental-land-management-
schemes-overview/environmental-land-management-scheme-overview  

Dicks, L.V., Viana, B., Bommarco, R., Brosi, B., Arizmendi, M.D.C., Cunningham, S.A., Galetto, 
L., Hill, R., Lopes, A.V., Pires, C. and Taki, H., 2016. Ten policies for pollinators. 
Science, 354(6315), pp.975-976. 

Donald, P.F. and Evans, A.D., 2006. Habitat connectivity and matrix restoration: the wider 
implications of agri‐environment schemes. Journal of applied ecology, 43(2), 

pp.209-218. 

Donkersley, P., Rhodes, G., Pickup, R.W., Jones, K.C. and Wilson, K., 2014. Honeybee 
nutrition is linked to landscape composition. Ecology and evolution, 4(21), pp.4195-
4206. 

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. and Yates, C.J., 2011. A statistical 
explanation of MaxEnt for ecologists. Diversity and distributions, 17(1), pp.43-57. 

Ferrini, S. and Scarpa, R., 2007. Designs with a priori information for nonmarket valuation with 
choice experiments: A Monte Carlo study. Journal of environmental economics and 
management, 53(3), pp.342-363. 

Franklin, J., 1995. Predictive vegetation mapping: geographic modelling of biospatial patterns in 
relation to environmental gradients. Progress in physical geography, 19(4), pp.474-
499. 

Garibaldi, L.A., Sáez, A., Aizen, M.A., Fijen, T. and Bartomeus, I., 2020. Crop pollination 
management needs flower‐visitor monitoring and target values. Journal of Applied 

Ecology, 57(4), pp.664-670. 

Garratt, M.P., Breeze, T.D., Jenner, N., Polce, C., Biesmeijer, J.C. and Potts, S.G., 2014. 
Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. 
Agriculture, ecosystems & environment, 184, pp.34-40. 

Giannini, T.C., Cordeiro, G.D., Freitas, B.M., Saraiva, A.M. and Imperatriz-Fonseca, V.L., 2015. 
The dependence of crops for pollinators and the economic value of pollination in 
Brazil. Journal of economic entomology, 108(3), pp.849-857. 

Giguere, C., Moore, C. and Whitehead, J.C., 2020. Valuing hemlock woolly adelgid control in 
public forests: scope effects with attribute nonattendance. Land Economics, 96(1), 
pp.25-42. 

Haab, T.C., Interis, M.G., Petrolia, DR and Whitehead, J.C., 2013. From hopeless to curious? 
Thoughts on Hausman’s “dubious to hopeless” critique of contingent valuation. 
Applied Economic Perspectives and Policy, 35(4), pp.593-612. 

Hanley, N. and Perrings, C., 2019. The economic value of biodiversity. Annual Review of 
Resource Economics, 11(1), pp.355-375. 

Hausman, J., 2012. Contingent valuation: from dubious to hopeless. Journal of economic 
perspectives, 26(4), pp.43-56. 

about:blank
about:blank


 

 

Heal, G., 2000. Valuing ecosystem services. Ecosystems, pp.24-30. 

Hijmans, R.J., 2012. Cross‐validation of species distribution models: removing spatial sorting bias 

and calibration with a null model. Ecology, 93(3), pp.679-688. 

Holling, C.S., 2001. Understanding the complexity of economic, ecological, and social systems. 
Ecosystems, 4(5), pp.390-405. 

Hoyos, D., 2010. The state of the art of environmental valuation with discrete choice 
experiments. Ecological economics, 69(8), pp.1595-1603. 

Hurley, P., Lyon, J., Hall, J., Little, R., Tsouvalis, J., White, V. and Rose, D.C., 2022. Co‐
designing the environmental land management scheme in England: the why, who 
and how of engaging ‘harder to reach’ stakeholders. People and Nature. 

Johnston, R.J., Boyle, K.J., Adamowicz, W., Bennett, J., Brouwer, R., Cameron, T.A., 
Hanemann, W.M., Hanley, N., Ryan, M., Scarpa, R. and Tourangeau, R., 2017. 
Contemporary guidance for stated preference studies. Journal of the Association of 
Environmental and Resource Economists, 4(2), pp.319-405. 

Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. 
and Tscharntke, T., 2007. Importance of pollinators in changing landscapes for 
world crops. Proceedings of the royal society B: biological sciences, 274(1608), 
pp.303-313. 

Kramer‐Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., 

Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M. and Cheyne, S.M., 2013. The 
importance of correcting for sampling bias in MaxEnt species distribution models. 
Diversity and distributions, 19(11), pp.1366-1379. 

Lancaster, K.J., 1966. A new approach to consumer theory. Journal of political economy, 74(2), 
pp.132-157. 

Lundhede, T.H., Jacobsen, J.B., Hanley, N., Fjeldså, J., Rahbek, C., Strange, N. and Thorsen, 
B.J., 2014. Public support for conserving bird species runs counter to climate 
change impacts on their distributions. PloS one, 9(7). 

McFadden, D., 1974. The measurement of urban travel demand. Journal of public economics, 
3(4), pp.303-328. 

Met Office, Hollis, D., McCarthy, M., Kendon, M., Legg, T., Simpson, I. (2018): HadUK-Grid 
gridded and regional average climate observations for the UK. Centre for 
Environmental Data Analysis, 25 September 2022. 
http://catalogue.ceda.ac.uk/uuid/4dc8450d889a491ebb20e724debe2dfb  

Morton, D.; Marston, C. G,; O’Neil, A. W.; Rowland, C. S. (2020). Land Cover Map 2019 (25m 
rasterised land parcels, GB). NERC Environmental Information Data Centre. 
https://doi.org/10.5285/f15289da-6424-4a5e-bd92-48c4d9c830cc  

Nijkamp, P., Vindigni, G. and Nunes, P.A., 2008. Economic valuation of biodiversity: A 
comparative study. Ecological economics, 67(2), pp.217-231. 

ONS, 2017.  Graduates in the UK labour market, available online at 
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentand
employeetypes/articles/graduatesintheuklabourmarket/2017  

Parkhurst, G.M. and Shogren, J.F., 2007. Spatial incentives to coordinate contiguous habitat. 
Ecological economics, 64(2), pp.344-355. 

about:blank
about:blank
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/graduatesintheuklabourmarket/2017
https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/graduatesintheuklabourmarket/2017


 

 

Petrovan, S.O., Vale, C.G. and Sillero, N., 2020. Using citizen science in road surveys for large-
scale amphibian monitoring: are biased data representative for species 
distribution?. Biodiversity and Conservation, 29(6), pp.1767-1781. 

Phillips, S.J., Anderson, R.P. and Schapire, RE, 2006. Maximum entropy modeling of species 
geographic distributions. Ecological modelling, 190(3-4), pp.231-259. 

Polasky, S., Nelson, E., Camm, J., Csuti, B., Fackler, P., Lonsdorf, E., Montgomery, C., White, 
D., Arthur, J., Garber-Yonts, B. and Haight, R., 2008. Where to put things? Spatial 
land management to sustain biodiversity and economic returns. Biological 
conservation, 141(6), pp.1505-1524. 

Polce, C., Termansen, M., Aguirre-Gutiérrez, J., Boatman, N.D., Budge, G.E., Crowe, A., Garratt, 
M.P., Pietravalle, S., Potts, S.G., Ramirez, J.A. and Somerwill, K.E., 2013. Species 
distribution models for crop pollination: a modelling framework applied to Great 
Britain. PloS one, 8(10). 

Porto, R.G., de Almeida, R.F., Cruz-Neto, O., Tabarelli, M., Viana, B.F., Peres, C.A. and Lopes, 
A.V., 2020. Pollination ecosystem services: A comprehensive review of economic 
values, research funding and policy actions. Food Security, 12(6), pp.1425-1442. 

Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., 
Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J. and Vanbergen, A.J., 2016. 
Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 
pp.220-229. 

Potts, S.G., Ngo, H.T., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., 
Settele, J. and Vanbergen, A., 2016. The assessment report of the 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 
on pollinators, pollination and food production. 

Rodríguez-Rey, M., Consuegra, S., Börger, L. and Garcia de Leaniz, C., 2021. Boat ramps 
facilitate the dispersal of the highly invasive zebra mussel (Dreissena polymorpha). 
Biological Invasions, 23(5), pp.1487-1496. 

Rose, J.M. and Bliemer, M.C., 2009. Constructing efficient stated choice experimental designs. 
Transport Reviews, 29(5), pp.587-617. 

Sàndor, Z. and Wedel, M. 2001. Designing conjoint choice experiments using managers’ prior 
beliefs, Journal of Marketing Research, 38, pp 430–444.  

Scarpa, R. and Rose, J. M. 2008. Designs efficiency for nonmarket valuation with choice 
modelling: how to measure it, what to report and why. Australian Journal of 
Agricultural and Resource Economics 52(3), pp. 253–282.  

Scarpa, R., Chilton, S.M. Hutchinson, W.G. and Buongiorno, J. 2000. “Valuing the recreational 
benefits from creation of nature reserves in Irish forests”. Ecological Economics 33, 
pp. 237–250.  

Train, KE, 2009. Discrete choice methods with simulation. Cambridge university press. 

Vatn, A. and Bromley, D.W., 1994. Choices without prices without apologies. Journal of 
environmental economics and management, 26(2), pp.129-148. 

Woodcock, B.A., Garratt, M.P.D., Powney, G.D., Shaw, R.F., Osborne, J.L., Soroka, J., 
Lindström, S.A.M., Stanley, D., Ouvrard, P., Edwards, M.E. and Jauker, F., 2019. 
Meta-analysis reveals that pollinator functional diversity and abundance enhance 
crop pollination and yield. Nature Communications, 10(1), pp.1-10. 



 

 

Xiao, Y., Li, X., Cao, Y. and Dong, M., 2016. The diverse effects of habitat fragmentation on 
plant–pollinator interactions. Plant Ecology, 217(7), pp.857-868. 

Yao, R., Scarpa, R., Harrison, D. and Burns, R. 2019. “Does the economic benefit of biodiversity 
enhancement exceed the cost of conservation in planted forests?” Ecosystem 
Services 38, p. 100954.  

Yao, R., Scarpa, R., Turner, J.A., Barnard, T.D., Rose, J.M., Palma, J.H.N., and Harrison, D.R. 
2014. “Valuing biodiversity enhancement in New Zealand’s planted forests: 
Socioeconomic and spatial determinants of willingness-to-pay”. Ecological 
Economics 98, pp. 90 –101.  

Zimmermann, N.E., Edwards Jr, T.C., Graham, C.H., Pearman, P.B. and Svenning, JC, 2010. 
New trends in species distribution modelling. Ecography, 33(6), pp.985-989. 

 

Appendix 

 

 

Figure A.1 Example choice card (Scheme 1: No coordination) 



 

 

 

 

Figure A.2 Example choice card (Scheme 2: Coordination bonus) 
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