

Access to High Performance Computing facilities — autumn 2025 Service Specification

ARCHER2

Service details

Service Contact Details: support@archer2.ac.uk
Service Webpage: https://www.archer2.ac.uk/

Hardware and Technical specifications

System name: ARCHER2

Compute nodes: 5,860 compute nodes

Processors: Each node has dual AMD Rome 64 core CPUs at 2.2GHz, for 748,544

cores in total and 1.57 PBytes of total system memory

Interconnect: Cray Slingshot

Storage: 14.5 PBytes of Lustre work storage in 4 file systems

Software available:

Information on the HPE-provided software is on https://www.archer2.ac.uk/about/hardware.html Information on software packages and libraries installed by the ARCHER2 team at EPCC can be found at https://docs.archer2.ac.uk

Additional information on hardware available

https://www.archer2.ac.uk/about/hardware.html

Use cases particularly suited to this service

Large scale jobs

Resources available through this call

Unit(s) of Allocation:

ARCHER2 allocates its compute resource in ARCHER2 Compute Units (CU). Please note 1 node hour on ARCHER2 costs 1 CU, unless jobs are submitted in low priority queues where a discount applies.

Indicative level of computational resource available through this call:

Up to 2.5 MCUs over 9 months, 10% of EPSRC's ARCHER2 compute.

Indicative sizes of previously successful applications (not a restriction)

From around 10,000 CUs to more than 1,000,000 CUs

Percentage compute allocated to UKRI mechanisms (including but not limited to this call)

95%

Storage available

Flexible with justification

Requirements on applications for the service

Project length restrictions over and above those in the call

Nine (9) months. The current planned end date for ARCHER2 is November 2026.

Maximum and Minimum requests

Users must request more than 4000 CU. Users who want less can use the Pump-priming access route to ARCHER2, see https://www.archer2.ac.uk/support-access/access.html

Baskerville

Service details

Service Contact Details: baskerville-tier2@contacts.bham.ac.uk

Service Webpage: https://www.baskerville.ac.uk/

Hardware and Technical specifications

System name: Baskerville

Compute nodes: 50 Lenovo liquid cooled compute nodes, each providing four NVIDIA

GPUs.

Processors: 37 nodes with 2x Intel® Xeon® Platinum 8360Y, 512GB, and 4x

NVIDIA A100 40G GPUs

11 nodes with 2x Intel® Xeon® Platinum 8360Y, 512GB, and 4x

NVIDIA A100 80G GPUs

2 nodes with 2x AMD EPYC® 9554, 768GB, and 4x NVIDIA H100 80G

GPUs

Interconnect: All nodes are connected by

• 1x HDR (200Gbps) NVIDIA Mellanox InfiniBand port (ConnectX-6

PCIe gen4 adapter)

• 1x 25GbE NVIDIA® Mellanox® (on-planar ConnectX-4 port)

It is worth noting that the use of InfiniBand represents a valuable USP of Baskerville compared to other Tier 2 (and indeed Tier 1) providers, allowing it to excel at tasks where rapid communication across

multiple nodes is required.

Storage: 5PB of HDD and 0.5PB of SSD are available. The storage systems are

Lenovo DSS-G running IBM® Spectrum Scale

Software available: A full list of installed software is available at

https://apps.baskerville.ac.uk/applications/

Additional information on hardware available

N/A

Use cases particularly suited to this Service

Baskerville is designed for GPU-accelerated workloads and is suitable for both single-GPU and multi-GPU jobs, with parallelisation up to 8 nodes (32 GPUs) supported as standard. Workloads that are predominantly CPU-focussed will not be accepted.

Resources available through this call

Unit(s) of Allocation

GPU core hours (GPUh)

Indicative level of computational resource available through this call

175,000 GPUh per quarter

Indicative sizes of previously successful applications (not a restriction)

Previous successful applications have been awarded between 5,000 and 100,000 GPUh per quarter.

Percentage compute allocated to UKRI mechanisms (including but not limited to this call)

40%

Storage available

Up to 100TB of storage can be requested. Globus is available to support parallel data transfer.

Requirements on applications for the service

Project length restrictions over and above those in the call

3 months

Maximum and Minimum requests

No formal limits

Cirrus

Service details

Service Contact Details: support@cirrus.ac.uk
Service Webpage: https://www.cirrus.ac.uk

Hardware and Technical specifications

System name: Cirrus
Compute nodes: 256 nodes
Processors: 73,728 cores

Interconnect: Dual-rail HPE Cray Slingshot 11 Storage: /home: Ceph file system (1PB)

/work: E1000 Lustre file system (1 PB)

Software available: https://docs.cirrus.ac.uk/

Additional information on hardware available

http://www.cirrus.ac.uk/about/hardware.html

Use cases particularly suited to this Service

Good mix of use cases for CPU

Resources available through this call

Unit(s) of Allocation

CPU core hours (CPUh)

Indicative level of computational resource available through this call

258 M CPUh per year65 M CPUh per quarter

Indicative sizes of previously successful applications (not a restriction)

CPU requests ranged from 2 kCPUh - 2 MCPUh

Percentage compute allocated to UKRI mechanisms (including but not limited to this call)

40% of compute allocated to UKRI

Storage available

Defaults are /home 100GiB and /work 250GiB, can allocate more space if justified

Requirements on applications for the service

Project length restrictions over and above those in the call

Allocations will be made on a quarterly basis up to a maximum of 12 months.

Maximum and Minimum requests

Flexible with justification

Cambridge Service for Data Driven Discovery (CSD3)

Service details

Service Contact Details: Stuart Rankin

Service Webpage: https://www.csd3.cam.ac.uk/

Hardware and Technical specifications

System name: CSD3

Compute nodes: Dell PowerEdge C6420, 56 cores, 192GiB RAM (Cascade Lake CPU)

Dell PowerEdge XE8545, 128 cores (AMD EPYC 7763), 1TiB RAM

(GPU).

Processors: Total 3584 CPU cores of type

Intel Xeon Platinum 8276 @ 2.20GHz (Cascade Lake).

Total 64 GPU cards (NVIDIA A100 SXM4 80G).

Interconnect: Mellanox HDR100 InfiniBand (Cascade Lake CPU).

Dual-rail Mellanox HDRD200 InfiniBand (GPU).

Storage: 2133TB Lustre filesystem.

Software available: GCC and Intel (on CPU nodes) and NVIDIA (on GPU nodes)

development environments and various packages, see https://docs.hpc.cam.ac.uk/hpc/ for more information.

Additional information on hardware available

https://docs.hpc.cam.ac.uk/hpc/

Job policies:

- 36 hours maximum wallclock time per job.
- 4256 CPUs and 64 GPUs maximum active at one time per user.
- All proprietary licenses for user software must be provided by the applicant.
- All data must be removed at the end of the allocation period.

Use cases particularly suited to this Service

MPI-parallel multinode jobs, shared memory single node jobs, CUDA-accelerated simulations on GPU, machine learning.

Resources available through this call

Unit(s) of Allocation

CPU core hours (CPUh), GPU core hours (GPUh)

Indicative level of computational resource available through this call

7.8 M CPU core hours in total for all projects if these start on 1st January 2026. 141,000 GPU hours in total for all projects if these start on 1st January 2026. In both cases if projects start later the total resources remaining will be reduced pro rata according to the time remaining until 31st March 2026.

Indicative sizes of previously successful applications (not a restriction)

1M CPUh per quarter.

10K GPUh per quarter.

Percentage compute allocated to UKRI mechanisms (including but not limited to this call) 100%

Storage available

2PB

Requirements on applications for the service

Project length restrictions over and above those in the call

All projects must end by 31st March 2026.

Maximum and Minimum requests

No formal limits

Isambard 3

Service details

Service Contact Details: brics-enquiries@bristol.ac.uk
Service Webpage: brics-enquiries@bristol.ac.uk

Hardware and Technical specifications

System name: Isambard 3

Compute nodes: 384

Processors: NVIDIA Grace-Grace CPUs, 72 cores per socket, 144 cores per node

at 3.1 GHz. 240 GBytes LPDDR5X memory providing ~1 TByte per second of memory bandwidth per node. NVIDIA's Grace CPUs implement the Arm instruction set (aarch64), rather than the x86

instruction set used by Intel and AMD.

Interconnect: HPE Slingshot 11 200 Gbps

Storage: 2 PetaBytes HPE ClusterStor Lustre

Software available: Cray Programming Environment (CPE), GNU compilers and libraries,

Clang/LLVM compilers and libraries, NVIDIA compilers and libraries.

Further software described on service webpage.

Additional information on hardware available

See service webpage for detailed information for "Isambard 3 Grace"

Use cases particularly suited to this Service

General-purpose HPC codes with a focus on memory bandwidth.

Resources available through this call

Unit(s) of Allocation

Node hours (NH)

Indicative level of computational resource available through this call

Up to 60% of Isambard 3's compute resource is available for allocation through this call. For the 12 months of this call, this amounts to about 1.2 million node hours (1.2M NH).

Indicative sizes of previously successful applications (not a restriction)

We anticipate projects will apply for allocations in the range of tens of thousands to low hundreds of thousands of node hours.

Percentage compute allocated to UKRI mechanisms (including but not limited to this call) 60% for UKRI in total.

Storage available

The 2 PetaByte storage system in total can support projects needing up to tens of TeraBytes each, with appropriate justification. Note that Isambard 3's storage is scratch space only, and project data that needs to be stored safely and securely beyond the project will need to be stored elsewhere, as per the Isambard 3 terms and conditions.

Requirements on applications for the service

Project length restrictions over and above those in the call

12 months

Maximum and Minimum requests

Applications will preferably demonstrate that the codes have already successfully run on an Armbased platform, such as a previous incarnation of Isambard, or on Fugaku or AWS Graviton etc. If this is not possible, reasonable evidence that the codes are not x86-specific should be provided. Additionally, evidence that the codes have already been shown to scale well to node sizes appropriate for Isambard 3 and Tier 2 more generally should be provided.

Jade 2.5

Service details

Service Contact Details: jade-support@arc.ox.ac.uk
Service Webpage: https://www.jade.ac.uk/

Hardware and Technical specifications

System name: Jade 2.5

Compute nodes: 3× Lenovo ThinkSystem SR685a V3

Processors: 2× AMD EPYC 9534 64-Core CPUs per node

8x AMD MI300 GPUs (PCIe) per node

Interconnect: Mellanox NDR

Storage: 32TB of local SSD scratch

network bulk storage

WEKA scratch

Software available: Apptainer, GCC, ROCm

Additional information on hardware available

2.2 TB DDR5 Registered ECC RAM

8× AMD MI300X GPUs with 192GB RAM per node

System supplied by Lenovo

System integration, hosting and management by ARC, University of Oxford

Use cases particularly suited to this Service

N/A

Resources available through this call **Unit(s) of Allocation**

GPU/h

Indicative level of computational resource available through this call

42,000 GPU/h over a six-month period

Indicative sizes of previously successful applications (not a restriction)

4,000 GPU/h

Percentage compute allocated to UKRI mechanisms (including but not limited to this call)

40%

Storage available

10TiB per project

Requirements on applications for the service

Project length restrictions over and above those in the call

6 months

Maximum and Minimum requests

20,000 GPU/h (Maximum), 4,000 GPU/h (Minimum)

Northern Intensive Computing Environment (Bede)

Service details

Service Contact Details: Rebecca Appleby (arc.admin@durham.ac.uk),

+44(0) 191 33 4250

Service Webpage: https://n8cir.org.uk/bede/

Hardware and Technical specifications

System name: Bede (bede.dur.ac.uk)

Compute nodes: 32x IBM AC922 with 0.5TB and 4x32GB V100 GPU,

4x IBM IC922 with 256GB and 4xT4 GPU,

6/7*x Grace Hopper (96GB GPU RAM) 480GB LPDDR5X RAM

1/0*x Grace-Grace 480GB LPDDR5X RAM

1 DUAL 2xGrace Hopper (144GB GPU RAM) 480GB LPDDR5X RAM

*Grace-Grace node normally configured as login environment, but can be swapped in as a compute node with a Grace-Hopper node

configured for login if requested. AC922: 2x16core 2.7Ghz Power 9.

IC922: 2x20core 2.9Ghz Power 9.

Grace Hopper: Grace 72-core aarch64 CPU 3.483Ghz, Hopper H100

96/144GB HBM3e

Interconnect: Mellanox EDR

Storage: 2Pb, 10GB/s Lustre filesystem for running jobs.

Software available

Processors:

https://bede-documentation.readthedocs.io/en/latest/software/index.html

Additional information on hardware available

https://bede-documentation.readthedocs.io/en/latest/hardware/index.html

Use cases particularly suited to this Service

Accelerated computing that requires more than what can be provided by a single accelerator: Extending accelerator memory into CPU (memory coherence); using multiple accelerators per node & using multiple accelerators across nodes. Both simulation and AI/ML workloads.

Resources available through this call

Unit(s) of Allocation

GPU core hours (GPUh)

Indicative level of computational resource available through this call

23,500 GPUh on V100 1st Jan - 31st March 2026. Access to Grace-Hopper seed units for evaluation

Indicative sizes of previously successful applications (not a restriction)

10,000 GPUh over 9 months

Percentage compute allocated to UKRI mechanisms (including but not limited to this call)

38%

Storage available

N/A

Requirements on applications for the service

Project length restrictions over and above those in the call

3 months

Maximum and Minimum requests

40,000 GPUh / year maximum

Northern Ireland HPC

Service details

Service Contact Details: v.purnell@qub.ac.uk
Service Webpage: www.ni-hpc.ac.uk

Hardware and Technical specifications

System name: Kelvin-2 Compute nodes: Standard:

- 60x Dell PowerEdge R6525 with 768GB RAM
- 28x Dell PowerEdge R6525 with 1TB RAM

X-series compute:

 2x Dell PowerEdge R6525 with 1TB RAM with dual 7773X CPU series

Hi-memory:

6x Dell PowerEdge R6525 with 2TB RAM

GPU:

- 32 x NVIDIA Tesla v100 GPUs in 8 nodes.
 16 x NVIDIA Tesla A100 GPUs in 4 nodes.
- 4 x AMD MI300X GPU's in 1 node.4 x Nvidia H100 GPUs in 1 node.
- 4 x Intel Max 1100 GPUs in 1 node.

Processors: AMD Rome 2x64core 7702 Interconnect: Mellanox EDR infiniband

Storage: 4PB usable lustre for scratch storage

Metadata Servers: Dell R640

Metadata Targets: Dell Powervault ME2024 with 1TB SSD

Object Storage servers: Dell Powervault ME4084

Software available

Rocky8.10 operating system Lustre scratch file system Alces flight cluster manager

Additional information on hardware available

N/A

Use cases particularly suited to this Service

Priority areas from original bid focussed on computational neuroscience, advanced chemistry, innovative drug delivery, precision medicine, food fingerprinting and hydrogen deflagration. Kelvin-2 is a general-purpose cluster so can deliver on a wide range of use cases.

Resources available through this call

Unit(s) of Allocation

CPU core hours (CPUh), GPU core hours (GPUh)

Indicative level of computational resource available through this call

8.5M CPUh per quarter 33,000 GPUh per quarter

Indicative sizes of previously successful applications (not a restriction)

2M CPUh per quarter 10,000 GPUh per quarter

Percentage compute allocated to UKRI mechanisms (including but not limited to this call)

35%

Storage available

4PB shared scratch

Requirements on applications for the service

Project length restrictions over and above those in the call

6 months

Maximum and Minimum requests

Max number of cores per job: 1344
Min number of cores per job: 600
GPUs per job max: 4
GPUs per job min: 1

Sulis

Service details

Service Contact Details: sulis@warwick.ac.uk
Service Webpage: https://sulis.ac.uk

Hardware and Technical specifications

System name: Sulis

Compute nodes: Dell PowerEdge R6525 compute nodes each with 128 cores per

node; 512 GB DDR4-3200 RAM per node

Processors: 2 x AMD EPYC 7742 2.25 GHz 64-core processors per node

GPU nodes contain 3x Nvidia A100 40 GB (PCle variant) or

3 x NVIDIA L40 48 GB RAM

Details at https://sulis-hpc.github.io/techspecs/

Interconnect: Mellanox ConnectX-6 HDR100 (100 Gbit/s) InfiniBand

Storage: 800TB (SSD) IBM Spectrum Scale (GPFS)

Software available

Large suite of compilers/libraries available via environment modules, Python and R packages and end-user applications. Others installed on request. Containers are supported via Singularity.

Additional information on hardware available

Sulis has 4 high memory (1 TB RAM) and 3 very high memory (4 TB of RAM) nodes available for pre- and post-processing of data, memory intensive analytics etc.

Use cases particularly suited to this Service

Sulis is particularly suited for high throughput and ensemble computing workloads consisting of many small (workstation scale) calculations that can be bundled up into a smaller number of job submissions.

See sulis-hpc.github.io/advanced/ensemble for examples.

Sulis is less suited for large calculations that require high speed low-latency communication between GPUs or CPU nodes, e.g. high fidelity CFD simulations or data processing that relies on tightly coupled GPUs.

Resources available through this call

Unit(s) of Allocation

CPU core hour GPU hour

Indicative level of computational resource available through this call

15M CPU core hours and 40k GPU hours.

Indicative sizes of previously successful applications (not a restriction)

Typically, 1-5 million CPU core hours or 15-25k GPU hours over 12 months.

Percentage compute allocated to UKRI mechanisms (including but not limited to this call) 25%

Storage available

Default 2TB per user. Larger allocations might be accommodated on request depending on available space.

Requirements on applications for the service

Project length restrictions over and above those in the call

3 months. Projects are limited to finish by end of March 2026 after which machine status is uncertain. Exploratory access will be granted in advance of project start to facilitate preparation to exploit allocated time.

Maximum and Minimum requests

No explicit limits. Projects needing less than 100,000 CPU core hours or 1,000 GPU hours should request exploratory access via sulis.ac.uk rather than applying via this call.

Change log

Name	Date	Version	Change
Christian Oganbule	15/07/2025	1	Draft version
Afia Masood	28/08/2025	2	Updated the service specification for Tier2 HPCs
Christian Oganbule	10/09/2025	3	Added the service specification for BEDE. Updated the amount of available compute and project length restrictions.
Christian Oganbule	12/09/2025	4	Redrafted to suit UKRI's updated style guide
Christian Oganbule	20/10/2025	5	Added service specification for CSD3