Area of investment and support

Area of investment and support: Microelectronic device technology

This research area focuses on electronic devices for processing information, including new applications, new materials and the integration of novel technologies into electronic components.

Partners involved:
Engineering and Physical Sciences Research Council (EPSRC)

The scope and what we're doing

This area covers Research into electronic devices for processing information, including new applications, new materials and the integration of novel technologies into electronic components.

It also includes devices based on integrating electronics with computational state variables beyond electronic charge alone, for example spin polarisation.

It links to other research areas in relation to the integration of electronics with photonics, radio frequency and microwave technology, and quantum technology.

This area includes development of novel devices using complementary metal-oxide-semiconductor (CMOS)-compatible technology.

This strategy recognises the area’s importance as a key enabler for most industrial sectors.

Developments in microelectronics device technology are likely to continue to enable advances across information and communication technologies (ICT). Microelectronics Device Technology is an evolution of previous research areas CMOS Device Technology and Non-CMOS Device Technology, and builds on previous strategies for them.

We aim to have:

  • researchers making contributions to the EPSRC cross-ICT priorities of Safe and Secure ICT and Future Intelligent Technologies, through work on the security and reliability of devices and on technology to enable lower power consumption, faster communication and on-node processing
  • a community with stronger links to physical sciences research areas, to draw on advances there, and create the next generation of microelectronics devices
  • researchers continuing to integrate new functionality into electronic devices to further extend performance
  • researchers addressing the challenges of handling power efficiently
  • strong links between researchers in this area and the Compound Semiconductor Applications Catapult, and with EUROPRACTICE (integrated circuit design and manufacture support, funded by the EU), to facilitate impact strategies, and to have considered other opportunities to improve coordination of usage of specialist facilities.

Fully addressing many of these challenges will require ambitious interdisciplinary proposals bringing together researchers from fields including materials, devices, photonics, healthcare, manufacturing and instrumentation (as described in our Cross-Disciplinarity and Co-Creation cross-ICT priority).

We will continue to monitor research training provision, especially in power electronics, and the development of future leaders to ensure that these reflect academic and industrial needs.

As with our previous rationale for CMOS Device Technology, we do not wish to support research aimed at miniaturisation through gate-length reduction (to meet Moore’s Law predictions) as part of this area. Our priority remains novel device research that goes beyond Moore’s Law.

Why we're doing it

Microelectronics device technology draws on research from a number of scientific fields, including silicon-based and compound semiconductor technology, novel aspects of physical sciences and advanced materials.

Quality across the area in the UK is generally high, with internationally recognised highlights – as evidenced by UK representation on Institute of Electrical and Electronics Engineers: Circuits and Systems Society (IEEE-CAS) technical committees and at international conferences.

The Research Excellence Framework (REF) 2014 exercise rated a large number of publications in the area as 4* and university strategies and investments reflect this strength.

Areas of particular UK strength include research into novel functionality in microelectronic devices, memory devices, printed flexible electronics, power electronics and materials for electronic applications. This unites a number of different approaches, including mixed-technology platforms. Key fellowships and programme grants are funded in these fields.

The UK electronic systems sector is of major national importance. In 2013, electronic systems technology was worth an estimated £80 billion per year to the economy. Sensor technology has the potential to transform healthcare and industrial process control. Advances in memory technology could also be disruptive.

In 2011, EPSRC decided not to support research aimed at miniaturisation of CMOS devices through gate-length reduction, as large non-UK industrial investment in this field meant such research would have been unlikely to have had significant national impact.

There is much engagement from small and medium-sized enterprises (SMEs) with larger EPSRC grants, including spinouts. Companies (for example, IQE) involved in the underpinning materials science are also supported by strong academic engagement. Power electronics is a sphere of important industry connections, with direct interest from the electronics, automotive and energy sectors.

The announcement of the new Compound Semiconductor Centre and Catapult demonstrates the UK’s strategic interest in compound semiconductors, which play a critical role in many aspects of this research area. The fabrication infrastructure supported by EUROPRACTICE is a key facility enabling a subset of the community to maintain high-quality microelectronics device research. Scope exists for greater strategic engagement between EPSRC and STFC on this. To further support experimental work, there is scope for more coordination in the use of specialist facilities.

Sector-wide concerns surround training provision in electronic systems, especially postgraduate training; this is not served especially well by relevant Centres for Doctoral Training (CDTs), which alone cannot meet demand. Power electronics could be an area for increased EPSRC attention to support the ‘people pipeline’. Skills shortages are widely reported across the sector and are predicted to get worse.

Key enabling organisations for UK research include:

This area links to many research areas and themes, especially:

Research areas of most current relevance include:

View evidence sources used to inform our research strategies.

Past projects, outcomes and impact

Last updated: 27 July 2023

This is the website for UKRI: our seven research councils, Research England and Innovate UK. Let us know if you have feedback or would like to help improve our online products and services.